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ABSTRACT 

Scheduling analysis is one of the most important activities in hard real-time 

systems development since the correctness of hard real-time systems depends not only on 

the logical results of computation, but also on the time at which the results are produced. 

This dissertation aimed at the development of both fundamental theory and software tools 

to support efficiently and reliably the scheduling of distributed hard real-time systems. The 

major work of this dissertation focuses on non-preemptive hard real-time scheduling, for 

periodic and sporadic task sets, although some of the results are also applicable to the 

preemptive case. 

Several theorems for checking the schedulability of non-preemptive task sets are 

developed. Previous results on necessary and sufficient conditions for scheduling non- 

preemptive task sets are extended to cover the case when the task deadlines can be smaller 

or equal to their periods. The concept of transient and cyclic schedules is introduced to 

overcome the weakness of the traditional methods, which restrict the construction of a 

cyclic schedule to a fixed interval of length equal to the least common multiple of the 

periods. An algorithm for reducing the schedule length of periodic task sets is developed 

to further enhance the schedulability of the hard real-time systems. Preliminary study on 

randomly graphs shows that the algorithm do produce near-optimal solution. 

To ease the problem of synchronization among tasks in distributed hard real-time 

systems, we introduce the Fundamental Synchronization Theorem and a novel model for 

designing distributed hard real-time systems without explicit synchronization, and develop 

an Ada95 software architecture to support such a model The application of this theorem 

wül allow us to treat each set of tasks allocated to a particular processor, as a totally 

independent set, if the tasks satisfy the conditions described in the theorem. This approach 

will greatly decrease the difficulties in scheduling large distributed real-time systems. 

One of the necessary steps in distributed hard real-time scheduling is the allocation 

of tasks to different processors in the distributed system. Algorithms for task allocation 

which ininimize the inter-module communication costs are developed and implemented. 

Finally, a timing model for handling different time references in rapid prototyping 

systems is introduced, to support the reuse of real-time components. 
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I.       INTRODUCTION TO HARD REAL-TIME SYSTEMS 

A.       INTRODUCTION 

Traditionally, most real-time systems have been built for military purposes. As 

computers become faster, more inexpensive, and more reliable, a tendency towards 

automation is emerging in virtually every field of activity. Areas in which real time 

systems are being more widely employed include manufacturing, communications, 

defense, transportation, aerospace, energy, and health care. 

"Hard real-time systems" are defined as those systems in which the correctness of 

the system depends not only on the logical results of computation, but also on the time at 

which the results are produced. They are also characterized by the fact that severe 

consequences will result if logical as well as timing correctness properties of the system 

are not satisfied. [SR88] 

To put it briefly, real-time systems differ from traditional systems in that deadlines 

or other explicit timing constraints are attached to the tasks or processes. 

Audsley and Bums presented a very interesting approach [AB93], where the time 

taken to complete a task is mapped against the value this task has to the system, 

developing the so called time-value functions. This work proposes an adaptation of their 

approach to be used by CAPS, where the time critical tasks could have several kinds of 

deadlines, as shown in Figure 1.1. Tasks with hard deadlines may cause damage to the 

system if they start early or finish late. Tasks with soft deadlines convey the main idea of 

"better late than never", and the tasks with hybrid deadlines can be assumed to have a soft 

deadline behavior until certain point in time, but then they become hard deadline tasks, 

generating damage to the system. Using this approach, it is possible to determine whether 

it is more convenient to preempt a task that has not finished within its deadline or keep it 

running. This approach provides a much better representation for a task deadline, than 

mat achieved by merely calling it a soft or a hard deadline. 



In general it can be said that there are three types of tasks, depending upon their 

deadline characteristics. The periodic tasks that execute on a regular basis, and usually 

have a period and a required execution time. The aperiodic tasks (also known as non- 

periodic) which are essentially random tasks triggered by some external event. Aperiodic 

tasks may also have some timing constraints that limit their maximum start or finish time. 

However, if aperiodic tasks are allowed to have hard deadlines (in other words, if they are 

allowed to have negative values once the deadline is missed) worst case analysis cannot be 

further discussed without further restricting their timing behavior. This is the rationale 

behind the third type of task, the sporadic task, in which a minimum period between any 

two aperiodic events is required. [AB93] 

Figure 1.1. Types of Task Deadlines 

In addition to timing constraints, a task can have other constraints, such as [SR88]: 

1) resource constraints - which note the resources required during the execution 

of the task 

2) precedence constraints - that specify a partial (perhaps total) ordering on the 

execution of the tasks 

3) concurrency constraints - that describe which tasks can run concurrently, to 

share, for example, a resource 



4) placement constraints - which note whether a given task is to run in a specific 

processor 

5) criticalness - which is the relative value to the system that is associated with 

some specific task when it meets its deadline 

6) preemptiveness - determining whether a task can be interrupted by other tasks 

and resume execution afterwards 

7) communication requirements - that note issues, such as acceptable delays, for 

inter-task communications and synchronization protocols 

Task scheduling in hard real-time systems can be either static or dynamic. In static 

scheduling it is assumed that all information about the tasks is known a priori, and the 

schedule is usually generated off-line. In dynamic scheduling, although all information 

about the tasks may be known a priori, they are allowed to be dynamically invoked, and 

the schedule is calculated "on the fly". There has been a great deal of debate about the 

appropriateness of dynamic algorithms for hard real-time systems. Many people are in 

favor of static scheduling because it seems reasonable to assume that for safety-critical 

applications all the schedulability should be guaranteed before execution [AB93]. 

B.       REVIEW OF PREVIOUS WORK 

According to Baker [Bak74], scheduling is the allocation of resources over time to 

perform a collection of tasks. This rather general definition conveys the basic idea of 

scheduling theory, which is a collection of principles, models, techniques and logical 

conclusions that provide insight into the scheduling function. 

Many of the early developments in the field of scheduling were motivated by 

problems arising in manufacturing. Today, even though scheduling is used in many 

different areas, there are still references that deal with machines instead of processors, and 

with jobs instead of tasks. 

In order to have a better understanding of the context in which scheduling issues 

are found, it is reasonable to begin by proposing a taxonomy for the scheduling function. 



This taxonomy is an enhancement of that proposed by Cheng, et al. [CSR87] and is 

illustrated in Figure 1.2. 

As shown in the figure, classical scheduling can be divided into four major areas: 

single-machine problems, parallel-machine, flow shop, and job shop scheduling. Most of 

these areas make use of objective functions, such as minimizing flowtime, niinimizing 

mean tardiness, and niinimizing completion time (makespan), which does not convey much 

of the important information needed by real-time systems. In most of these problem areas, 

the deadline concept is not even considered. Nevertheless, some of these results can 

provide very fruitful insights into real-time scheduling problems. Another issue that is not 

considered in many of the problems associated with classical scheduling is the idea of 

periodic tasks, meaning tasks that run forever. For further reading on classical scheduling 

the reader is directed to the work of Baker [Bak74] and Stankovic, et al. [SSN93]. The 

latter reference presents a concise survey on the implications of classical scheduling results 

for real-time systems. 

Scheduling    1 

Classical 
IZL 
Real-Time 

Single Machine 

-: Parallel Machlnas 

Hard 
—r~ 

Soft 

-i       Flow Shop       | 
Static 

J_ 
Dynamic 

Job Shop 
X I 

|     Preemptable Non 
Praamptabla 

- Unl/Multlprocassor j 

Praamptabla 

UnVMuMpro 
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Praamptabla 

Unl/MuMproc 3 
Plstrtbutad      } L       Distributed      j L       Distributed      } L|      Distributed      j 

Unl/Multlprocassorj 

Figure 1.2. Scheduling Taxonomy 

Tasks can also be distinguished as preemptable or non-precmptable. A task is 

preemptable if it can be interrupted by other tasks and can resume execution afterwards. 

A non-preemptable task, once started, must run to completion. 



Another concept that requires introduction is the difference between 

multiprocessor systems and distributed systems. In multiprocessor systems, the cost of 

interprocessor communications is negligible, as the different processors usually have some 

kind of shared memory and a global clock. In distributed systems, the cost of 

interprocessor communications is not negligible, as the processors do not share any 

memory space and each processor has its own clock. It is now appropriate to make a brief 

review of some previous work done in hard real-time scheduling, with an emphasis on the 

results related to static scheduling. 

1.       Preemptive Static Scheduling 

In cases where the tasks are periodic, which is the most common case in 

real-time systems, it can be said that the most important result for the uniprocessor case 

was provided by Liu and Layland [LL73]. They proved that the Earliest Deadline First 

(EDF) algorithm is optimal for any set of independent periodic tasks where optimality is 

defined by the statement, "if a set of tasks can be scheduled by any algorithm, then it can 

be scheduled by the EDF algorithm". They also demonstrated some bounds on processor 

utilization when using this algorithm. Their results were extended to cover cases where 

the release times are arbitrary by Jeffay [Jef89a]. Also based on Liu and Layland's work, 

a more elaborate schedulability test was proposed by Lehoczky, et al. [LSD89]. This test 

employed the concept of processor time demand for handling cases where the deadlines 

were smaller than the periods. Sha and Lehoczky [LS86] described a technique of 

splitting the periods so that better processor utilization could be achieved. 

Horn [Hor74] developed an optimal CKn2) algorithm that was also based 

on the earliest deadline first principle. Originally formulated for non-periodic tasks, this 

algorithm proved capable of handling independent tasks with arbitrary deadlines and 

release times in a uniprocessor environment. For the same type of tasks, he also 

introduced an algorithm for the multiprocessor case that was based on the network flow 

method. Martel [Mar82] extended the work of Horn by allowing for processors with 

different speeds. 



For multiprocessor scheduling of periodic tasks, most of researchers have 
adopted a partition approach, where some kind of bin-packing algorithm is used to 

determine the sub-optimal partitions. Examples can be found in the work of Davari and 

Dhall [DD86], Bannister and Trivedi [BT83], and in that of Dhall and Liu PL78]. 

2. Non-Preemptive Static Scheduling 

There has been a great deal of research in the area of preemptive real-time 

scheduling. For the non-preemptive case, however, most problems have been shown to be 

NP-hard, even in the uniprocessor case. Hence, the majority of the work that has been 

done in this area covers very specific cases, such as when unit computation times are 

involved, or when release times are the same. Moore [M0068] showed that the earliest 

deadline algorithm is optimal for scheduling a set of independent tasks that have the same 

release time. Bratley, Florian and Robillard [BFR71] developed an implicit enumeration 

algorithm to determine scheduling for non-preemptive tasks with arbitrary release times 

and deadlines. Baker and Su [BS74] used a similar approach to minimize the maximum 

tardiness of tasks. Erschler, et al. [EFM83] developed a necessary condition for 

scheduling tasks with arbitrary release times and deadlines. When utilizing periodic task 

sets, which are definitely the major area of focus for this study, the major results can be 

found in the work of Mok [Mok83], Xu [XP90], Jeffay [JSM91] and Zhu [ZLC94]. 

3. Summary of Scheduling Complexity 

In dealing with scheduling problems where most of the input instances have been 

proven to be NP-hard, it is very important and beneficial to know in which class a 

particular instance belongs, so that the problem can be addressed appropriately. However, 

when one looks into the huge amount of research in this area, it becomes apparent that the 

various studies are very difficult to compare. While it is undesirable to limit the creativity 

of researchers, it is increasingly apparent that some kind of standard is needed, so that 

individual research efforts at least speak in the same language. 



Nevertheless, this section offers a summary of the major results achieved in the 

area of time complexity of scheduling algorithms, for both the preemptive and non- 

preemptive cases. Whenever the result is applicable to periodic task sets, it will be briefly 

mentioned. 

In Table 1.1, it has been listed, for each case, the number of processors (m), the 

precedence relation (<) among the tasks (if one exists), the valid domain for the release 

time (r,), the deadline (fi), the computation time (c), whether it is preemptive or non- 

preemptive, the time complexity of the problem, the reference paper, and, finally, some 

additional remarks. Note that in this table most of the results are for non-periodic task 

sets. In the following section, the problem of how to apply these results to the periodic 

case is addressed. 

Preemptive 
-'■■•m ■;::;;:.:.; Preced» 

Relations M 
:-il d Complexity Reference Remark 

arb arbitrary 0 arb arb NPC GJ77a 

art) forest k oo arb CXnloRm) GJ77b 

arb tree 0 oo arb CXn2) MC70 

arb tree 0 oo arb (Xnlogm) GJ77b 

arb empty arb oo arb CXn3) Hor74 Network Flow 
Same Speed Processors 

arb empty arb oo arb CXmV+n5) Mar82 Network Flow 
Different Processors 

arb empty arb oo arb CXnlogn) DD86 EDF(di = Pi)orRM + 
<Xn) Next-Fit 

1 arbitrary arb arb arb CXn2) Bla76 EDF based 

1 empty arb oo arb CXn2) Hor74 EDF based 

1 empty 0 arb arb CXn2) LL73 rate-monotonic 
periodic tasks (d* = Pi) 

Non-Preemptive 
arb tree 0 oo 1 CXnlogn) Hu61 

arb empty arb arb 1 CXn'loglogn) Sim83 Barrier's A1R. 

2 arbitrary arb arb 1 CXn1) GJ77a 

1 arbitrary 0 oo arb 0(n2) Law73 Backward EDF 

1 arbitrary arb arb 1 CXnlogn) GJS81 Forbidden Regions Alg. 
(Voycomplex data structures) 

1 empty arb arb 1 CXnlogn) Jac55 EDF (Minimizes Completion 
Time) 

1 empty 0 arb arb CXn2) M0068 EDF 

Table 1.1. Major Results in Scheduling Algorithms 



Table 1.2 summarizes the complexity boundaries of various non-preemptive 

problems with respect to the number of processors, computation time, and type of partial 

order. 

Jtiislfi Preced. 
Relations lili ill iitei Complexity Reference 

k>m>2 arbitrary 0 k i OPEN 

aib arbitrary 0 k i NPC U1175 

arb empty 0 k arb NPC U1175 

2 arbitrary 0 k U NPC U1175 

2 empty 0 k arb NPC U1175 

1 empty arb arb arb NP-hard GJ77a 

k£m£2 arbitrary 0 k 1 P CG72 

arb tree 0 k 1 P Hu61 

arb empty 0 k 1 P U1175 

Table 1.2. Summary of Non-Preemptive Scheduling Complexity 

Table 1.3 is very interesting in the sense that it delimits the boundaries between 

NP-completeness and polynomial solvability for the more constrained non-preemptive 

scheduling problem, where resources (Rsrc) other than processors are being requested by 

the tasks. As can be seen, by having no precedence relations, or for values of m less than 

2 in the first case, or by making m less than three in the second case, the resulting 

problems can be solved in polynomial time. [GJ75] 

m Preced. 
Relations 

rb * Ci Complexity Reference Remark 

m£2 forest 0 k 1 NPC GJ75 Rsrc 2:1 

m£3 empty 0 k 1 NPC GJ75 Rsrc 21 

Table 1.3. Complexity of the Scheduling Problem with Several Resources 

Other important results are: 

"It is impossible to find a totally optimal run-time scheduler even if 
any ready process is permitted to preempt any other process in 
progress".[Mok76] 

"When there are mutual exclusion constraints, it is impossible to 
find a totally on-line optimal run-time scheduler".[Mok83] 



"The problem of deciding whether it is possible to schedule a set of 
periodic processes which use semaphores only to enforce mutual exclusion 
is NP-hard".[Mok83] 

"The problem of computing a static schedule for a set of periodic 
timing constraints is NP-haid".[Mok83] 

"Non-preemptive scheduling of periodic tasks when release times 
are taken into consideration is NP-hard in the strong sense".[JSM91] 

"The processor allocation problem is NP-complete even for the 
case where only two processors are available and the processor scheduling 
problem resulting from any partition is easy".[Mok83] 

"The problem of finding an optimal schedule is NP-hard for a single 
processor even if all tasks have the same ready time and deadline". [LW90] 

4.        A Brief Note about the Periodic Task Complexity 

It is very common for authors of papers that deal with the scheduling of non- 

periodic tasks, i.e., tasks that are executed only once, to infer that their algorithms or 

methods can also be applicable to periodic tasks by simply applying the same algorithm to 

the set of tasks occurring within a time period that is equal to the least common multiple 

of their periods. 

Although this assertion is true in most of cases, one must note that a polynomial 

time algorithm for scheduling non-periodic tasks may take exponential time to schedule a 

set of periodic tasks using the same algorithm To see this, consider an algorithm A that 

schedules a set T of n non-periodic tasks in time 0(11I3), where 111 is equal to the size of 

the input instance. Clearly, by using a binary encoding, 0( n + Hog r* + Slog c* + Hog d<) 

bits are needed to encode such an instance. Now, assume a set Tof n periodic tasks with 

periods p,, p2,... , p„, whose input size is 0( n + Hog T, + Slog Cj + Hog d; + Hog p,). 

Note that in the worst case an LCM of p, x p2 x ... x p„ exists. So, in order to use 

algorithm A to schedule the periodic task set T, one must first transform T into an 

equivalent set T" of non-periodic tasks with p2X p3...x p„ instances of task Ti, pix p3...x 

p, instances of task T2, pix pj.. .x p„ instances of task T3, and so on. 



Clearly, the size II"I of the input instance T" is equal to 

0(n+t [(log r, + log Ci + log di) x Pl xPzX-xp" ]) 
i=i p. 

and algorithm A will take 0(in3) time to schedule all task instances in T". But, since H"l 
n 

g C x ([ n + I (log ri + log cj + log d; + log pi) ]k) for any constants C and k, O(II'f) 

is exponential with respect to H'l. 

5.        Complexity Results for Message Routing in Distributed Systems 

This section presents some very interesting results from Leung [LTW89] regarding 

the possibility or impossibility of sending a set of messages in a distributed real-time 

system on-time. Each message M is represented by the quintuple (s;,ej,li,rj,di) where Si 

denotes the origin node for Mi, d denotes the destination node, 1^ is the length of M;, rs is 

the release time, and d; denotes the deadline of M;. The problem was studied for both 

preemptive and non-preemptive cases, but this discussion will be restricted to the latter. It 

is also assumed that the processors are connected by an uni-directional ring. Table 1.4 

shows the complexity results for the non-preemptive transmission. An entry marked k 

denotes that the parameter is the same for all messages, while a V entry denotes that it can 

vary according to the message. 

Si ei rt * Complexity 
V k k k P 
k V k k P 
k k V k P 
k k k V P 
k k V V NP 
k V k V NP 
k V V k NP 
V k k V NP 
V k V k NP 
V V k k NP 

Table 1.4. Complexity for Non-Preemptive Transmissions 
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As shown in Table 1.4, the message routing problem becomes NP whenever two 

or more parameters are allowed to be arbitrary. These and other results had a great 

influence on the manner in which this dissertation will treat distributed scheduling. 
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H.      CAPS AND PSDL OVERVIEW 

A.       MOTIVATION 

The United States Department of Defense (DoD) is currently the world's largest 

user of computers. Each year, billions of dollars are allocated for the development and 

maintenance of progressively more complex weapons and communications, and 

information systems. These systems increasingly rely on information processing, utilizing 

embedded computer systems, and are often characterized by time periods or deadlines 

within which some event must occur. Such periods or deadlines are known as "hard real- 

time constraints". Satellite control systems, missile guidance systems, and communications 

networks are examples of embedded systems with hard real-time constraints. The 

correctness and reliability of these software systems is critical, making software 

development of these systems an immense task with increasingly high costs and potential 

for design errors [Boo87]. 

Over the past twenty years, technological advances in computer hardware 

technology have reduced the hardware portion of total system cost from 85 percent to 

about 15 percent. In the early 1970s, studies showed that computer software alone 

comprised approximately 46 percent of the total estimated DoD computer costs. Of this 

cost, 56 percent was devoted specifically to embedded systems. In spite of the 

tremendous expense, most large software systems were characterized as not providing the 

functionality that was desired, taking too long to develop, costing too much time or taking 

too much space to use, and lacking the ability to evolve to meet the user's changing needs 

[Boo87]. 

Software engineering evolved in response to the need to more efficiently design, 

implement, test, install, and maintain larger and more complex software systems. The 

term "software engineering" was coined in 1967 by a NATO study group, and endorsed 

by the 1968 NATO Software Engineering Conference [Sch90]. The conference 

concluded that software engineering should use the philosophies and paradigms of 
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traditional engineering disciplines. Numerous methodologies have been introduced to 

support software engineering. The major approaches which underlie these different 

methodologies are the waterfall model [Lam88], the spiral model [Boe86], and the 

prototyping methods of development [Luq89]. 

B.       THE WATERFALL MODEL 

The waterfall model describes a sequential approach to software development as 

shown in Figure 2.1. The requirements are completely determined before the system is 

designed, implemented and tested. The cost of systems developed using this model is very 

high. Required modifications that are realized late in the development of a system, such as 

during the testing phase, have a much greater impact on the cost of the system than they 

would have if they had been determined during the requirements analysis stage of 

development. Requirements analysis may be considered the most critical stage of software 

development, since this is when the system is defined. 

SYSTEM 
ENGINEERING 

SYSTEM RBQ. 

PROBLEMS 

SYSTEM 

^^V REQMTS. 

ANALYSIS 

REQMTS. 

PROBLEMS 

^^^    REQMTS. 

DESIGN 

DESIGN 
PROBLEMS 

^^V    DESKJNDOC 

CODING 

TESTING 

eeee «eeee^sces > >* e o o o ^ceee   ^^ 

Figure 2.1. The Waterfall Model 
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Requirements are often incompletely or erroneously specified, due to the often vast 

difference in the technical backgrounds of the user and the analyst. It is often the case that 

the user understands his application area but does not have the technical background to 

communicate his needs to the analyst, while the analyst is not familiar enough with the 

application to detect a misunderstanding between himself and the user. The successful 

development of a software system is stricdy dependent upon this process. The analyst 

must understand the needs and desires of the user and the performance constraints of the 

intended software system in order to specify a complete and correct software system. 

Requirements specifications are still most widely written using the English 

language, which is an ambiguous and non-specific mode of communication. 

Another difficulty of the classical life cycle is that communication between a 

software development team and the customer or the system's users is weak. Most of the 

time the customer does not know what he or she wants. In that case it is hard to 

determine the exact requirements, since the software developer is also unfamiliar with the 

problem domain of the system. Formal specification languages are used to formalize 

customer needs to a certain extent Another disadvantage of the classical project life cycle 

is that a working model of the software system is not available until late in the project time 

span. This may cause two things: 

1) A major bug that remains undetected until the working program is reviewed, 

which can be disastrous [Pre87]; 

2) The customer will not a have an idea of what the system will look like until it is 

complete. 

C       THE SPIRAL MODEL 

Large real-time systems and systems which have hard real-time constraints are not 

well supported by traditional software development methods because the designer of this 

type of system would not know if the system can be built with the timing and control 

constraints required until after much time and effort has been spent on implementation. A 
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hard real-time constraint imposes a time-bound on the response time of a process which 

must be satisfied under all operating conditions. 

To solve the problems raised in requirements analysis for large, parallel, 

distributed, real-time, or knowledge-based systems, current research suggests an 

alternative paradigm for software development and evolution based on rapid prototyping 

[LB88]. The purpose of prototyping is to ensure that proposed requirements and system 

concepts adequately match the needs of the prospective client(s) before detailed 

optimization and implementation efforts begin. As a software methodology, rapid 

prototyping provides the user with increasingly refined systems to test and the designer 

with ever better user feedback between each refinement The result is more user 

involvement throughout the development/specification process, and consequently, better 

engineered software. 

The prototyping method shown in Figure 2.2 has recently become popular. "It is a 

method for extracting, presenting, and refining a user's needs by building a working model 

of the ultimate system - quickly and in context" [Boa84]. This approach captures an 

initial set of needs, and quickly implements those needs with the stated intent of iteratively 

expanding and refining them as the user's and designer's understanding of the system 

grows. The prototype is only to be used to model the system's requirements, rather than 

as an operational system [You89]. 
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Figure 2.2. The Prototyping Process 

This iterative prototyping process is also known as the "Spiral Model of Software 

Development" and is illustrated in Figure 2.3. In the prototyping cycle, the system 

designer and the user work together at the beginning of the project to determine the 

critical parts of the proposed system. The designer then implements a prototype of the 

system based on these critical requirements by using a prototype description language 

[Luq89]. The resulting system is presented to the user for evaluation. During these 

demonstrations, the user determines whether the prototype behaves as it is supposed to 

do, examines user interface options, and, most importantly, verifies understanding of the 

problem and solution. If errors are found at this point, the user and the designer work 

together again on the specified requirements to correct them. Concurrently, a risk analysis 

is initiated to decide whether or not to move on to the next cycle of the spiral. This 

process continues until the user determines that the prototype successfully captures the 

critical aspects of the proposed system. This is the point where precision and accuracy are 

obtained for the proposed system. The designer then uses the prototype as a basis for 

designing the production software. 
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Figure 2.3. The Spiral Model 

Some advantages and disadvantages of iterative development methodology are 

listed below: 

Advantages: 

1) There is constant customer involvement (revising requirements). 

2) Software development time is greatly reduced. 

3) Methodology maps to reality. 

4) It allows use of off-the-shelf tools. 

Disadvantages: 

1) There are configuration control complexities. 

2) The developer is compelled to manage customer enthusiasm. 

3) There are uncertainties in contracting the iterative development 

Manually construction of the prototype still takes too much time, and can 

introduce many errors. Also, it may not accurately reflect the timing constraints placed 

upon the system.  What is needed is an automated method of rapidly prototyping a hard 
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real-time system that reflects those constraints and requires minimal development time. 

Such a system should exploit reusable components and validate timing constraints. 

If Ada software that is reliable, affordable, and adaptable is to be produced and 

maintained, the characteristics of Ada may not be the only important matter to consider, as 

the characteristics of Ada software development environments may well be critical 

[BL91]. 

The rapid, iterative construction of prototypes within a computer aided 

environment automates the prototyping method of software development, and is called 

rapid prototyping. Rapid prototyping provides an efficient and precise means to determine 

the requirements for the software system, and greatly improves the likelihood that the 

software system developed from the requirements will be complete, correct, and 

satisfactory to the user. The potential benefits of prototyping depend critically on the 

ability to modify the behavior of the prototype with less effort than that required to modify 

the production software. Computer aided and object-based rapid prototyping provides a 

solution to this problem. 

D.       THE COMPUTER AIDED PROTOTYPING SYSTEM (CAPS) 

The Computer-Aided Prototyping System (CAPS) [LK88] is a software 

engineering tool for developing prototypes of real-time systems. It is useful for 

requirements analysis, feasibility studies, and the design of large embedded systems. 

CAPS is based on the Prototype System Description Language (PSDL) [LBY88], which 

provides facilities for modeling timing and control constraints within a software system. 

An overview of PSDL will be presented in the following section. CAPS is a development 

environment, implemented in the form of an integrated collection of tools, linked together 

by a user-interface, and provides the following kinds of support to the prototype designer: 

• timing feasibility checking via the scheduler, 

• consistency checking and some automated assistance for project planning, 

scheduling, designer task assignment, and project completion date estimation 

via the Evolution Control System, 
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• design completion via the editors, 

• computer-aided software reuse via the software base. 

A CAPS prototype is initially built as an augmented data flow diagram and a 

corresponding PSDL program. The CAPS data flow diagram and PSDL program are 

augmented with timing and control constraint information, which is used to model the 

functional and real-time aspects of the prototype. The CAPS environment provides all of 

the necessary tools for engineers to quickly develop, analyze, and refine real-time software 

systems. 

The general structure of CAPS is shown in Figure 2.4. The CAPS User-Interface 

provides access to all of the CAPS tools, and facilitates communication between tools 

when necessary. The tools in Figure 2.4 are grouped into four sections: Editors, 

Execution Support, Project Control and Software Base. Each CAPS tool is associated 

with a different aspect of the CAPS prototyping process. 

Figure 2.4. The CAPS Structure (from Bro[94]) 

CAPS is specifically designed to assist and partially automate development efforts 

which lie in the shaded regions of the prototyping process (Figure 2.2). Specifically, based 
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on a set of initial requirements, CAPS allows the engineer to design, modify, demonstrate 

and validate a software system. Through this process, system requirements can be refined 

and modified as necessary. 

The CAPS prototyping process is more specific, and it could be said that it is a 

refinement of what is shown in Figure 2.2, and is outlined below. [Bro94] 

1) Based on requirements, design (or modify) the data flow diagram for the system 

2) Assign all appropriate timing and control constraints to the prototype operators. 

Assign latencies to data streams (if required) 

3) Assign data types to all data streams 

4) Find (in the software base) or build an implementation module for each user- 

defined data type and each atomic operator. Modules taken from the software 

base can be modified after retrieval to suit individual needs 

5) Build the prototype's user-interface (if required) 

6) Translate the CAPS-generated (and user-augmented) PSDL program into (a 

portion of) the Ada supervisor module 

7) Run the CAPS scheduler to generate the static and dynamic schedules. This 

completes the prototype's Ada supervisor module 

8) Compile the prototype. (Note: for successful compilation, particular attention 

must be paid to the formal parameters of atomic operator implementation 

procedures created in step 4) 

9) Execute, evaluate and modify (if appropriate) the prototype and/or the 

requirements 

10)Retum to Step 1 if prototype modification is required 

The correlation between these 10 steps and Figure 2.2 is obvious. Note that the 

basic 10 steps are a bit more detailed than the preceding prototyping process diagram. 

This highlights the real-time requirements, and associated design considerations of typical 

CAPS prototypes. 
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The remainder of this introduction briefly introduces the CAPS tools used to 

perform the basic 10 steps. Note, also, that two of the CAPS tools are outside the 

purview of the prototyping process diagram. These tools perform ancillary functions 

which are not seen in either the prototyping process diagram or the 10 basic CAPS steps. 

These advanced feature tools are the Evolution Control System and the Merger. 

The purpose of the Evolution Control System is to provide automated support for 

coordinating the concurrent efforts of a team of prototype designers, and to manage 

multiple versions of the designs they produce [Bad93]. The purpose of the Merger is to 

combine the effects of two or more enhancements to a prototype that have been 

independently developed [Dam94]. 

CAPS can be executed in either the designer mode or the manager mode. The 

manager mode provides access to CAPS advanced features, including modification of the 

designer pool, creation of project work steps, and prototype change-merging. CAPS 

supports distributed prototype development, and the manager interface provides facilities 

for such efforts. For simple, single-designer prototype building, the designer mode should 

be used. 

1.        CAPS Tools 

This section provides a brief description of each CAPS tool. 

ft        The PSDL Editor 

The PSDL Editor is the heart of CAPS prototype design. This editor 

consists of 3 separate parts: the Syntax Directed Editor, the Graph Viewer, and the 

Graphic Editor. This tool allows the designer to create the CAPS data flow diagram and 

the PSDL program, and assign all timing and control constraints to prototype components 

(operators and data streams). 

b.        The Text Editor 

Although the text editor is not exclusively a CAPS tool, CAPS does 

provide fluid integration of text editing facilities. Designers can select from vi, emacs and 
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the Verdix Ada Syntax Directed Editor (if available) for editing Ada programs. Use the 

"CAPS Defaults" selection under the "CAPS Edit" pull-down menu to make this 

selection. The CAPS User-Interface provides convenient file selection lists, based on the 

currently selected prototype. 

c. The Interface Editor 

CAPS integrates TAE+ [Tae93] for creation of window-based user- 

interfaces for prototypes. When using the TAE Workbench for creation of such user- 

interfaces, the designer must use the "single file" Ada code generation option from within 

TAE+. The automatically generated TAE code is placed in the prototype directory in a 

file called 
<prototype_name>.RAW_TAE_INTERFACE.a. 

For details about how to integrate this file into a prototype, see Chapter 

VH of the CAPS Tutorial by Brockett [Bro94]. 

d. The Requirements Editor 

The current version of CAPS does not have a sophisticated requirements 

tracking or editing tool. Simple text editor integration is provided for editing 

requirements documents associated with a prototype. CAPS will automatically present 

the user with a list of all files with a " jeq" suffix when "Requirements" is selected from 

the "Edit" pull-down menu. After a file is selected, the default text editor will be invoked 

on that file. 

e. The Change Request Editor 

As with requirements, the current version of CAPS does not have a 

sophisticated change request tracking or editing tool. Simple text editor integration is 

provided for editing change request documents associated with a prototype. CAPS will 

automatically present the user with a list of all files with a ".cr" suffix when "Change 

Request" is selected from the "Edit" pull-down menu. After a file is selected, the default 

text editor will be invoked on that file. 
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/. The Translator 

The CAPS translator converts a PSDL program into compilable Ada 

packages which implement supervisory aspects of the prototype. The translator expects a 

complete PSDL program as input, and creates several packages which make up, in part, 

the supervisor module of the prototype. It is important to note that the translator does not 

create Ada implementation packages for atomic operators or user-defined data types. 

These must be either extracted from the software base, or custom-made by the designer. 

g.        The Scheduler 

The scheduler determines schedule feasibility for CAPS prototypes. 

Information is provided to the scheduler via timing constraints from the prototype's PSDL 

program. A prototype must be translated before it can be scheduled, and scheduled before 

it can be compiled. Upon scheduling a prototype, CAPS provides schedule diagnostic 

information which can be analyzed and used to direct timing constraint modifications. 

h.        The Compiler 

CAPS uses the SunAda Ada compiler. The compilation process is 

completely automated via the "Compile" command provided in the "Exec Support" pull- 

down menu in the CAPS User-Interface. Successful prototype compilation requires the 

formal parameter lists of atomic operator implementation modules to conform to CAPS 

interface conventions. 

L The Evolution Control System 

The CAPS Evolution Control System (ECS) [Bad93] is a system that 

supports distributed prototype development in a team environment The ECS makes use 

of a design database (DDB) for persistent storage of prototype development data. The 

ECS supports maintenance of a designer pool from which to draw for prototype 

development tasks.   Within the ECS, prototype development is modeled as a series of 
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Steps that are created by the project manager.  These steps are automatically scheduled 

and assigned to available designers. 

j. The Merger 

The CAPS Merger [Dam94] provides automated prototype change- 

merging. Based on slicing theory, as applied to PSDL programs, the Merger automates 

the combination of two separate modifications to a base prototype. The Merger detects 

and warns of conflicts between the two changes to be merged. If no conflicts occur, or if 

they are overridden, the Merger creates a PSDL program for the newly created prototype 

which incorporates the changes of each of the modified prototypes. 

k.        The Software Base 

The CAPS software base and its associated retrieval mechanism [Dol93] 

provide access to a repository of reusable Ada and PSDL components. The software base 

allows a designer to browse as well as query its components. Queries to the software base 

can be in the form of keywords or PSDL specifications. In the current release of CAPS, 

the software base matching mechanism is based on parameter matching. 

E.       THE PROTOTYPING SYSTEM DESIGN LANGUAGE (PSDL) 

PSDL is a partially graphical specification language developed for designing real- 

time systems. It has several facilities for modeling timing and control constraints, but is 

also useful for requirements analysis and feasibility studies. It was designed as a 

prototyping language specifically for CAPS, to provide the designer with a simple way to 

specify software systems [LBY88]. PSDL places strong emphasis on modularity, 

simplicity, reuse, adaptability, abstraction, and requirements tracing. 

A PSDL prototype is built as an hierarchical structure of components, graphically 

represented as data flow diagrams, and augmented with timing and control information. 

Each component may contain zero or more definitions for OPERATORS and TYPES, 

where each definition has two parts: 
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• Specification part: Defines the external interfaces of the operator or the 

type through a series of interface declarations, provides timing constraints, and describes 

functionality by using informal descriptions and axioms. 

• Implementation part: Denotes what the implementation of the component 

is going to be, either in Ada or PSDL. Ada implementations point to Ada modules, which 

provide the functionality required by the component's specification. PSDL 

implementations are data flow diagrams augmented with a set of data stream definitions 

and a set of control constraints. 

1.       PSDL Computational Model 

PSDL is based on a computational model containing OPERATORS that 

communicate via DATA STREAMS, where each stream carries values of a fixed abstract 

data type. There are several ADTs already built into PSDL; the PSDL_EXCEPTION is 

one of them. Modularity is supported through the use of independent operators that can 

only gain access to other operators when they are connected via data streams. 

The PSDL computational model is formally represented as an augmented graph 
[LBY88] 

G = (VJEJMJCM) 

where: 

• V is a set of vertices 

• £ is a set of edges 

• T(v) is the set of timing constraints for each vertex v 

• Qv) is the set of control constraints for each vertex v 

Each vertex represents an operator and each edge represents a data stream. 

a.        Operators 

An operator represents either a function or a state machine. When it fires, 

an operator reads one data object from each of its input data streams and writes at most 

one data object on each of its output streams. If the output depends only on the current 
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set of input values, then the operator represents a function. In other words, the same 

response is given each time they are triggered. If, on the other hand, the output of the 

operator depends upon the input values and on internal state values representing some part 

of the history of the computation, then the operator represents a state machine. 

A PSDL operator can be either atomic or composite. Operators that are 

decomposed into lower levels are called composite operators, and they represent networks 

of components. This decomposition is always functional. An operator that is not 

decomposed is called atomic, and in the current version of CAPS, they are implemented in 

Ada, but any language could be used for that purpose. According to the PSDL grammar, 

it is in the implementation part of the operator that we can declare an operator to be 

atomic or composite. 

b.        Data Streams 

Data streams represent sequential data flow mechanisms which move data 

between operators. There are two kinds of data streams: sampled streams and data flow 

streams. 

In PSDL the data trigger of a consumer operator determines the type of a 

data stream If the stream is declared in the 'TRIGGERED BY ALL" clause of the 

consumer operator, then the stream is a data flow stream. In all other cases it is a sampled 

stream. 

Data-flow streams in the current implementation are similar to FIFO 

queues with a length of one. Any value placed into the queue must be read by another 

operator before any other data value may be placed into the queue, or it will overflow. 

Values read from the queue arc removed from the queue, and if any attempt is made to 

read from an empty queue, it will underflow. Sampled data streams may be considered as 

a programming variable which may be written to or read from at any time and as often as 

desired- A value is on the stream until it is replaced by another value. Some values may 

never be read, because they are replaced before the stream is sampled. As can be seen, 

care must be taken when reading values from uninitialized sampled streams.   All PSDL 
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data streams contain, at most, one data item at any given time. In summary, it could be 

said that a data flow stream guarantees that none of the data values are lost or replicated, 

while a sampled stream does not make such a guarantee. 

c. State Streams 

A CAPS prototype is a well-formed PSDL program if its graph 

representation (excluding all state streams) is a directed acyclic graph (DAG). This 

restriction may not seem to make sense at first glance. However, when a prototype graph 

contains a cycle, this indicates the presence of state information, and states must be 

explicitly declared and initialized. PSDL fully supports the integration of states in its 

prototypes. 

When a state is introduced into an atomic operator, it must be implemented 

within the Ada code for that operator, and shouldn't appear in the graph as a self loop 

state edge. 

d. Types 

PSDL user-defined data types are abstract data types (ADTs) which can be 

used in CAPS prototypes. PSDL types, like PSDL operators, can be implemented in 

either PSDL or Ada. Types can be associated with a set of operators. Types implemented 

in Ada are realized by an Ada package that defines a private type and a subprogram for 

each operator on that type. 

e. Exceptions 

Exceptions in PSDL arc values that can be transmitted on data streams of 

the type "PSDL_EXCEPTION". During prototype execution, undeclared exceptions are 

transformed into PSDL exceptions of the type PSDL_EXCEPTION, which is a subtype of 

UNDECLARED_ADA_EXCEPTION. Exceptions can also be raised by explicitly 

declaring them in the control constraints part of the PSDL program for the prototype. 
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/. Timers 

PSDL timers arc software stopwatches that are used to record the length of 

time between events, or to control the duration the system spends in some particular state. 

They are declared in the implementation part of a root operator, and are governed by the 

control constraints "START TIMER", "STOP TIMER" and "RESET TIMER". 

2.        Control Abstractions 

As a major property of real-time systems, periodic execution, as well as other 

timing related attributes, is supported explicitly. The order of execution is only partially 

specified, and is determined from the data flow relations given in the enhanced data flow 

diagrams, but also affected by the types of data triggers among operators. 

There are several control aspects to be specified, such as whether the operator is 

periodic or sporadic, the triggering conditions, and the output guards. 

a. Periodic and Sporadic Operators 

PSDL supports both periodic and sporadic operators. Periodic operators 

are triggered by the scheduler at approximately regular time intervals, so that they start 

execution somewhere after the beginning of the period, and complete by some deadline, 

which defaults to the end of the period. Sporadic operators are triggered by the arrival of 

new data, and possibly at irregular time intervals. 

b. Data Triggers 

Any PSDL operator can have a data trigger, of which there are two kinds, 

as illustrated by the following examples: 

OPERATOR P TRIGGERED BY ALL X, Y, Z 

OPERATOR Q TRIGGERED BY SOME A, B 

In the first example, the operator P is ready to fire whenever new data 

values have arrived on all three streams X, Y and Z (triggering set), although there may be 

other streams coming into the operator P, in which case the data values do not need to be 
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new. This means that the data streams associated with X, Y and Z are data flow streams. 

This kind of trigger should be used when the items in a stream represent discrete events 

(e.g., transactions on a bank account) rather than samples from a continuous source of 

data (e.g., a temperature sensor). This kind of trigger also ensures that the output of the 

operator is always based on fresh data for all of the inputs in the triggering set 

The most important design consideration when "BY ALL" triggers are 

used is management of the firing frequencies of the producing and consuming operators. 

The period of the consuming operator must be smaller or equal to the period of the 

producing operator, or stream buffer overflow errors will result (i.e., the consuming 

operator must fire at least as often as the producing operator). This is because the data 

streams in CAPS can hold a maximum of one data item CAPS ensures that if the 

consuming operator's period is less than that of the producing operator, the actual firing 

rate of the two will be the same (i.e., "BY ALL" trigger data streams are tested for new 

information prior to the actual firing of the consuming operator). 

In the second example, the operator Q is ready to fire whenever new data 

arrives on at least one of the inputs A or B. This kind of activation condition guarantees 

that the output of operator Q is based on the most recent data from at least one of its 

critical inputs A and B, mentioned after the TRIGGERED BY SOME clause. This is also 

a very constrained condition, since the scheduler must guarantee that a new data in A or B 

will not be lost 

If a periodic operator has a data trigger, the operator is conditionally 

executed with the data trigger serving as input guard. 

If a data trigger is not satisfied, the values are not read and, consequently, 

not consumed from any of the input streams. 

c.        Execution Guards 

The firing of a PSDL operator can be regulated by an execution guard. 

Execution guards are conditional statements which are evaluated prior to firing the 

associated operator. Execution guards can depend on data from any incoming data stream 
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and they can be combined with the "BY ALL" and "BY SOME" data triggers mentioned 

above. Even if an execution guard is not satisfied, the values are read and consumed from 

all the input streams, without firing the operator. Examples are: 

OPERATOR R TRIGGERED BY SOME X, Y IF X > 20.0 

OPERATOR S TRIGGERED IF X: EXCEPTION 

d.        Conditional Output 

PSDL conditional output is implemented in CAPS as guarded execution of 

code that writes values to data streams. Conditional output does not affect the firing of an 

operator, which will fire in accordance with the CAPS schedule regardless of whether or 

not its output is written to an output data stream. The condition of an output guard may 

depend on the output values of the operator, on the values read from the input streams, 

and on the values of timers. 

3.        Timing Constraints 

Operators can be time-critical or non time-critical, depending on whether or not 

they are assigned a value for the maximum execution time (MET) by the designer. If 

time-critical, they can be further subdivided into periodic or sporadic operators. Periodic 

operators are explicitly assigned a frequency (PERIOD) of execution, meaning that they 

will fire within regular periods, exacdy once, but not necessarily at regular intervals of 

time. Sporadic operators are not explicitly assigned a period, but they fire whenever there 

is new data on a set of input data streams, having, however, a minimum interval of time 

between successive firings. Periodic operators can also be triggered by the arrival of data. 

However, this trigger will behave like a condition to be checked during periodic firing. 

Every sporadic operator has an MRT and MCP in addition to an MET. 

Timing constraints are an essential part of specifying real-time systems, and in 

PSDL the following timing constraints are supported: 

• Maximum Execution Time (MET) 

• Period (PER) 

31 



Finish Within (FW) 

Maximum Response Time (MRT) 

Minimum Calling Period (MCP) 

Latency (LAT) 

Minimum Output Period (MOP) 

The MET reflects the amount of CPU time that an operator may use for execution, 

and is applicable to both periodic and sporadic operators. Note that for atomic operators 

the MET complies with the above definition. For the composite operator, however, the 

MET is the maximum CPU time needed along any thread of control. Within CAPS, the 

MET is assumed to account for the following: data triggering checks, stream reads, 

execution guards checks, the execution itself, output guards checks, stream writes, and 

exception handling. 

This parameter is by itself one of the most difficult to quantify. It is, therefore, 

unfortunate that it is also one of the most important parameters employed during the 

scheduling process. Two alternatives can be taken: to use the worst-case execution times, 

which can result in a poor processor utilization, or to use some value smaller than the 

worst-case, which introduces the possibility of an overload. For reasons of safety, CAPS 

uses the first approach by defining the MET as an upper-bound on the execution time. 

For further reading about execution time issues refer to Leinbaugh [Lei80, LY82] and 

Mok [Mok83]. 

Actually, due to the critical nature of the systems that CAPS was intended to 

prototype, the worst-case approach has been used throughout its design. This approach is 

observable even in the scheduling model, where the non-preemption option was chosen. 

This is because, while it is true that if a non-preemptive schedule can be devised for a set 

of tasks, then, it is possible to devise a preemptive one, but the opposite is not always true 

[Bla76]. 
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The MRT defines an upper-bound on the time between the arrival of new data that 

satisfies all data triggering conditions of a sporadic operator and the time when the last 

value is written onto the output stream. The MRT applies only to sporadic operators. 

The MCP also applies only to sporadic operators, and represents a lower-bound on 

the time between two consecutive triggerings of a sporadic operator. It constrains the 

behavior of the producers of the triggering data values, rather than constraining the 

behavior of the operator itself. Both timing constraints are illustrated in Figure 2.5. 

As shall be seen later, each sporadic operator is going to be converted into an 

equivalent periodic one, whose period is called the triggering period (TP). 

Scheduling delay for a sporadic operator is the interval of time between the writing 

into an output data stream by the producer and the corresponding reading of the input 

values by the consumer. 

New 
Data 

+ Scheduling'' 
Delay 

TP 

New 
Data 

Mit time        finnjinme 
chec* writing 

data trigger output 

MRT 

MCP 

Figure 2.5. Sporadic Timing Constraints 

Periodic operators are triggered by temporal events which must occur at regular 

intervals. For each operator, these activation times are determined by the specified period 

(PER), which is the time interval between two successive activations. The period applies 
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only to periodic operators.  Note, however, that there is a distinction between activation 

time and the actual start time of a periodic operator as shown in Figure 2.6. 

Temporal 

actuation       «art tune       finish time 
, chefk writing 

data trigger output 

FW 

PER 

Figure 2.6. Periodic Timing Constraints 

Finish within (FW) defines an upper bound on the finish time for a periodic 

operator. The difference between the activation time and its deadline is called the 

scheduling interval (SI) and it is equal to FW. 

Scheduling intervals of a periodic operator can be viewed as fixed windows of a 

size equal to FW, evenly separated by the period PER, and whose absolute position on the 

time axis is determined by the start time t of its first execution. For the first instance this 

time may vary within the closed interval [0.PER] of the operator, and is called the phase 

of the operator (Figure 2.7). Scheduling intervals for sporadic operators wfll be covered 

in the next chapter, after we discuss how to deal with this type of operator. 
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Figure 2.7. The Scheduling Interval 

The difference between FW and MET is called the slack of the operator.   Table 

2.1 summarizes the timing constraints for periodic and sporadic operators. 

liiii 

Maximum Execution Time (MET) 

Period (PER) 

Finish Within (FW) 

Sporadic Operators 

Maximum Execution Time (MET) 

Minimum Calling Period (MCP) 

Maximum Response Time (MRT) 

Table 2.1. Main PSDL Timing Constraints 

To express the behavior of distributed systems, PSDL provides two timing 

constraints. Latency (LAT) and the Minimum Output Period (MOP). The latency of a 

stream is an upper-bound on the duration of the time interval between the instant a data 

value is written into a stream and the instant that data value becomes available for reading 

from the stream. In other words, the latency attribute for a stream is meant to specify an 

upper-bound on the allowable time spent by that stream in the network. This information 

should be used by the scheduler to simulate the worst case behavior for the delay in the 

network.   Note, however, that this attribute does not explicitly require that the data 
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carried by the stream should be consumed, within the time interval, by the consumer 

operator on the other side of the network. The notation LATxy will be used to denote the 

latency associated with the stream between operators Tx and Ty. 

The minimum output period is a lower-bound on the duration of the interval 

between two successive write events on the stream. In the absence of explicit 

synchronization, both the latency and minimum output period of a stream have the default 

value of zero (no delay, unbounded data rate). The purpose of these additional constraints 

is to declare communication constraints that arise from hardware limitations imposed by 

external constraints on how the software functions must be allocated to different physical 

nodes of a distributed system Explicit modeling of these constraints is also sometimes 

required to ensure feasibility, because latency affects calculations of time budgets, as well 

as maximum execution times for composite operators. The effect of these constraints on 

static scheduling is that data cannot be read from a stream until a delay equal to the 

latency has elapsed, and that data cannot be written into a stream until the minimum 

period has elapsed. 

4.        A PSDL Prototype Example 

Figure 2.8 shows a simple autopilot system that illustrates some of the typical 

features of PSDL. The example has a minimal specification pan with an informal 

description. The implementation pan contains a graph, making the operator Autopilot a 

"composite" operator. The figure also indicates maximum execution times, 170 ms for 

operator display, 50 ms for operators compass and altimeter, and 75 ms for the remaining 

operators. AD operators arc periodic with a period of 500 ms, except for the operator 

control_surfaces, which is sporadic, with an MRT and MCP of 900 ms, as it is shown in 

the control constraints pan of the PSDL program 

Concluding, it can be said that the operator control_surfaces wül be triggered 

whenever there is new data in either the course_command or the altitude_command 

streams. The operators correct_altitude and correct_course will be triggered whenever 

there is new data in the actual_altitude and acrual_course streams, respectively. 
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OPERATOR naopilot 
SPECIFICATION 

STATES delu_coune: 
STATES dda_«ltilude: 
STATES denrad_counc: 
STATES daind_altitude: 

END 

IMPLEMENTATION 
GRAPH 

INTEGER INITIALLY 0 
INTEGER INITIALLY 0 
INTEGER INITIALLY 0 
INTEGER INITIALLY 0 

rudder status 

170 ms 75 ms 

alevator status 

DATA STREAM 

•cual.eouiie: 
■lTinirir_command: 

INTEGER. 
INTEGER. 
(lmidc_caasnind_typc 
iMMUM._nwunumi_typc* 

cleviior.Buu: clevuor_nmn_iype. 
Tuäia_mm: niddcr rau type 

CONTROL CONSTRAINTS 
OPERATOR •bimaer 

PERIOD 500 MS 
OPERATOR oorapui 

PERIOD 500 MS 
OPERATOR ooonoi_iurfKJw TRIGGERED BY SOME count connind. ttaaic oaanad 

MAXIMUM RESPONSE TIME 900 MS 
MINIMUM CALLING PERIOD 900 MS 

OPERATOR eacea thuudc TRIGGERED BY ALL ictu«I_tkmjdc 
PERIOD 500 MS 

OPERATOR cam cane TRIGGERED BY ALL maitl_eaumt 
PERIOD 500 MS 

OPERATOR ditpliy 
PERIOD 500 MS 

END  

Figure 2.8. Prototype of an Autopilot 
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m.    FUNDAMENTAL ISSUES IN REAL-TIME SCHEDULING 

A.       THE SCHEDULING MODEL AND SOME DEFINITIONS 

An instance of a prototype T can be thought of as the union of three disjoint finite 

sets, namely the set P of periodic operators, the set 5 of sporadic operators and the set N 

of non-time critical operators. Within CAPS, each periodic operator can be described, for 

scheduling purposes, as a three-tuple (METX, PER*, FWX), where METX is the maximum 

execution time used by each instance of operator X, PER* is its period and FWX is the 

length of its scheduling interval. Likewise, each sporadic operator can be described as a 

three-tuple (METX, MCPX, MRTX )
sp, where MCPX is the imnimum period between two 

consecutive instances of operator X, and MRTX is the upper bound on the time between 

the triggering of operator X by some new data arrival, and the completion of writing to all 

of its output streams. The superscript SP is used in the sporadic case, only to distinguish 

from the three-tuple of the periodic operator. Given any static schedule for a prototype T, 

we shall use Su, fix and d« to denote the actual starting time, completion time and deadline 

of the i* instance of operator X in the schedule. In any feasible schedule, we must have 

0<slx<PERx 

and 

dix = s,x + (i-l)xPERx + FWx Eq. (1) 

for every periodic operator X, where su is called the phase of operator X as defined in 

Chapter n. Note also from Eq. 1 that the deadline for the first instance of any operator is 

calculated relative to its start time rather than from time zero1. This condition will release 

the scheduler from enforcing the condition that the first instance of operator X should 

finish by the time PERE. Whenever possible, it is going to be used the letters X and Y to 

denote operators, leaving the letters i and j to denote their corresponding instances. 

^ime zero is defined as the time when prototype starts execution. In reality it is the start time of the 
first operator according to the topological sort. 
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Since, in general, the release time does not affect the complexity of the scheduling 

problem [Mok83], it will be assumed that all first instances are released at time zero, but 

may be constrained by the precedence relationship between the operators, if one exists. 

By definition, every periodic operator must start and finish execution within its 

period of activation. 

The following restriction is also imposed on the model, where the maximum 

execution time must be smaller or equal to the finish-within, which in turn must be smaller 

or equal to the period: 

MET<FW<PER 

Clearly, the first inequality is needed, otherwise there is no way to execute such an 

operator within the specified amount of time (FW). 

One may want to argue that there is a need to relax the second inequality to PER < 

MET < FW. Since PER < MET, such processor demand can only be satisfied using 

pipelining in a multiprocessor environment [Luq93, LSB93], which will be discussed in the 

next section. 

Note that for the sporadic operator all of the above assumptions are also 

applicable, since they will be convened into equivalent periodic operators, as can be seen 

later in this chapter. 

The Harmonic Block (HB) of a periodic task set P is the least common multiple 

(LCM) of all the periods in P. It is the interval upon which the task set will be tested for 

schedulability. If a feasible schedule can be found within 2xHB, in the case where 

latencies are not allowed in the schedule, or in at most 3xLCM if latencies are allowed, 

then it is possible to say that the same pattern can be repeated forever. This topic will be 

further discussed in Section C 

A prototype T is said to be schedulable if there exists a schedule such that the 

completion time for the execution of instance i of operator X (f*) is less than or equal to 

its corresponding deadline du, for all i and X, and the precedence constraints of the 

prototype T are satisfied. 
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The precedence constraint between operators X and Y, written as X < Y, where < 

denotes a partial ordering on the execution of tasks X and Y, is satisfied if 

V instances ij (i-1) x PER* + su < (H) x PERy + siy 

and 

(j-l)xPERy +siy + A < i x PERX + su 

where (i-1) x PERX = (j-1) x PERy 
2 and A equal the maximum time to read input by 

operator Y. 

Operators from either the periodic set P or from the sporadic set S are non- 

preemptable, which means that once they start execution they will run to completion. The 

only operators that can be preempted are those belonging to the set N. 

No idle time is inserted into the static schedule, unless there are no operators ready 

to execute. 

All timing information is assumed to be an integral multiple of a basic unit of time, 

which within CAPS is assumed to be the millisecond Table 3.1 presents a summary of the 

major assumptions of the scheduling model. 

For all periodic operators MET < FW < PER 
All time-critical operators are non-preemptable 

Time is discrete 
A periodic operator is completely specified by the tuple 
 (MET, PER, FW)  
A sporadic operator is completely specified by the tuple 

(MET.MCP.MRT)' SP 

Static Scheduling is assumed 

Table 3.1. Summary of our Scheduling Model 

In the next section, a series of theorems on schedulability for a set of independent 

non-preemptive periodic task sets will be presented. They will provide the necessary 

background to build a framework upon which the later sections of this chapter will be 

based. 

2 This condition will be relaxed after we present our new synchronization model in Chapter IV. 
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B.       CONDITIONS FOR SCHEDULABILITY OF NON-PREEMPTIVE TASKS 

In this section, a series of schedulability checks are introduced for a periodic task 

set P that has no precedence constraints. These results will be also applied to a set of 

periodic tasks with precedence constraints in Section D of this chapter. 

1.        The Maximum Execution Time Theorem 

When dealing with non-preemptive uniprocessor static scheduling a sufficient 

condition for unfeasibility occurs whenever a task requires more computation time than 

the period of any other task, or more specifically, more than the minimum period among 

all tasks. Formally: 

Theorem 1: 

'Tor an independent periodic task set P, if 3 some tasks X and Y e P, such that 

METX >PERy then P is not schedulable in the uniprocessor case by any non-preemptive 

algorithm   Furthermore, if X = Y then neither the preemptive nor the non-preemptive 

algorithms can find a feasible schedule." 

Proof: 

Clearly, whenever task X executes, task Y, which happens to have a smaller 

period, will be blocked for an interval of time bigger than its period, which is contradictory 

with the definition of a periodic task. □ 

Note that the Theorem still holds if precedence relationship exists among the tasks 

in P. This same result is also valid for a sporadic task set when METX > MCPy for X = Y 

(trivial case). However, for X * Y the situation is slightly more complex, and there are 

two cases to consider. The first is when MRTy < MCPy, and it is clearly not schedulable. 

The second case is when MRTy Z MCPy, and the set is not schedulable if MET, + METy > 

MRTy, as shown in Figure 3.1. 
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Figure 3.1. Theorem 1 for the Sporadic Case 

Corollary: (for the distributed case) 

•Tor an independent periodic task set P, if 3 some tasks X and Y e P, such that 

METX SPERy, then in order for P to be schedulable in the multiprocessor case, tasks X 

and Y must be placed in different processors, and if X = Y, then it must be pipelined."   □ 

The conditions imposed on a task X for it to be pipelineable as well as a detailed 

description of pipelining in this context, can be found in the work of Luqi [Luq93] and 

Luqi, Shing and Brocken [LSB93]. 
There are two ways to handle pipelining. The first is to use task migration at run- 

time, which involves sending a copy of the code and data to be executed in the other 

processor. This presents the following problems: 

1) It increases the context switching overhead, with direct impact on the timing 

constraints 

2) There is a need to create an additional task to handle the dispatching of tasks 

3) It is not well suited for static scheduling 
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The second approach is to replace the tasks to be pipelined in the other processors 

in a pre-processing step. For example, consider a periodic operator OPA(150,100,150) 

with inputs Dl, D2 and output D3 as shown in Figure 3.2. As shown in Figure 3.2b, we 

can replace operator OPA with two identical operators, OPB( 150,200,150) and 

OPC(150,200,150), with twice the original period and a state stream syn, whose latency 

equals the time taken by the non-overlappable segment of the code implementing operator 

OPA. The operators OPB and OPc will be triggered alternately on the value of syn. 

Dl D2 

PART A 

V 
D3 

PARTB 

D3 D3 

Figure 3.2. Pipelining Operators 

The replication of tasks throughout the system presents the following problems: 

1) It increases the memory requirements for the processors 

2) It demands highly sophisticated mechanisms for implementing tight 

synchronized schedules among the processors, which restricts this approach to 

the shared memory models with a global clock 

Both of the above discussed methods, however, suffer from the very serious 

problem of having to quantify the timing parameters of the segments of code that cannot 

be overlapped, which is by itself one of the hardest ones. If those timing parameters could 

be known in advance, then the operator could be separated into independent parts, and 

pipelining would not be needed. 
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The validity of pipelining in a hard real-time environment is therefore questionable, 

and, furthermore, it is impossible to implement in a distributed system where there is no 

inexpensive method by which to assure tight synchronization among tasks. 

2. The Finish-Within Theorem 

Theorem 2: 

'Tor an independent periodic task set P if 3 some indivisible task X e P such that 

METX > FWX then P is not schedulable under any scheduling algorithm, not even in a 

multiprocessor environment" 

Proof: 

Clearly, if MET* > FWX, the only way to handle this case is if we could split task X 

into two or more data independent partitions, so that they could run in parallel on different 

processors, but, as stated in the theorem, X is indivisible. □ 

Note that this theorem can be easily extended to cover the sporadic case when 

MET* > MRTX. It is also applicable to the case where we have precedence constraints in 

the set P. 

3. The Minimum Period Theorems 

In the other extreme of Theorem 1, there is a sufficient but not necessary condition 

to guarantee schedulability of an independent periodic task set, as stated in Theorem 3: 

Theorem 3: 

'Tor a periodic task set P, if V tasks X € P, FWX £ PERX and X METX < PERZ 
x=l 

where PERX denotes the minimum period in P, then P is schedulable." 3 

Proof: 

The minimum period is certainly a divisor of the least common multiple of the 

periods (LCM), and, as such, it can span the entire LCM within an integral number of 

Similar result was achieved independently by Zhu, et al. fZLC94] using the concept of critical time 
secuon. 
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Steps. It is a kind of sliding bin-packing where a sliding window of size equal to the 

minimum period is present and, always large enough to fit all tasks present in that window. 

Of course, depending on the periods, all instances may not be active simultaneously in that 

specific window. However, in the event that it does happen, the instances will always fit 

in there. Q 

As shall be seen later, this theorem is valid even when precedence constraints are 

taken into consideration. 

OP!(-,300,-) 
OP2(-,200,-) 
OP3(-,400,-) 
OP4(-,600,-) 

LCM 

Figure 3.3. The Minimum Period Sliding Window 

It is possible to use a counter example to show that the above condition is a 

sufficient but not necessary condition. Consider two periodic tasks with the following 

timing constraints: (5,10,10) and (2.5,5,5). The sum of METs is bigger than the minimum 

period, but this task set is still schedulable. 

What happens if all deadlines are restricted to be less than or equal to their 

corresponding periods? In this case it could be said that Theorem 3 is not applicable, as 

illustrated by the following example: (3,5,3), (1,10,3). 
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Theorem 4: 
n 

"For a periodic task set P, if V tasks X € P,  £ METX < FWZ, where FW2 denotes 
x=l 

the minimum FW in P, then P is schedulable." 

Proof: 

The same idea of sliding bin-packing applies here. Now, however, the size of the 

bin must be decreased. In other words, the "bin" now should be understood to be the 

least value among all periods and FW, among the tasks from P. □ 

The next theorem to be presented is the Load Factor Theorem, which is very well 

known in the field of scheduling. It defines a necessary condition for the schedulability of 

a periodic task set, and it basically stipulates that if the summation of all individual load 

factors (MET„/PERX) is bigger than the number of available processors, then the set is not 

schedulable [LL73]. 

4.        The Load Factor Theorem 

Theorem 5: 

'Tor a periodic task set P, if Y  ^ x > k, where k is the number of available 
^ xti PERx 

processors, then the set is not schedulable." 

Proof: 

A very simple proof is given independently by Zhu [ZLC94] and Jeff ay [JSM91] 

for the case where k equals 1. Basically, if both sides of the inequality are multiplied by 

the least common multiple (LCM) of their periods, it does not affect the inequality, but 

now 

n LCM 
I METxX——>LCM Eq.(2) 

x=l rt.Kx 

Clearly, the ratio LCM/PERX defines an integer that represents the number of 

instances for each task X within the LCM.   If the number of instances of each task is 

multiplied by its maximum execution time and the results are then added, the result is the 
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total computation time needed by the entire task set. According to Eq. 2, however, the 

total computation time needed is bigger than the LCM. In other words, even if all 

instances are executed one after another, they would not be able to finish within LCM. 

The case for k greater than one follows automatically. □ 

It should also be clear from the proof of Theorem 5 that it is valid to both 

preemptive and non-preemptive algorithms [ZLC94]. 

5.       The Task Demand Theorem 

The following theorem is based upon the previous work of Jeffay, et al. [JSM91] 

which established necessary and sufficient conditions for schedulability of an independent 

periodic task set in a non-preemptable uniprocessor environment The theorem to be 

introduced next is an adaptation for the scheduling model used in this dissertation. It 

differs from the original theorem in that Jeffay's model accounts for, tasks that are 

independent, there was no explicit deadline for the tasks other than their own period, and 

his definition for a schedulable set of tasks required that both conditions in the theorem 

should be valid for every concrete task set generated from P, where a concrete task set can 

be viewed as the original independent periodic task set P with specific release times for the 

first instance of every operator in P. 

The inclusion of the deadline which differs from the corresponding period into the 

problem made it a lot more complex, since tasks can now finish as early as their MET. 

The new results are presented in the following theorems: 

Theorem 6: 

'Tor an independent periodic task set P, where the tasks are sorted in non- 

decreasing order by finish-within (i.e., for any pair of tasks X and Y, if X < Y, then FW, £ 

FWy), if there exists a feasible schedule for every concrete task set in P, then the following 

conditions hold:" 

^xtiPERx"1, 
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2) Vx,Kx<n;   Vk,0<k<-^^; PER, 

£N(y,k x PERX + FWX) x METy < k x PERX + FWX 
y=l 

3)Vx,Kx<n;   VL,FWi<L<FWx; 

L^METx + XI N(y, L-l)xMETy 
y=l 

J(y,L)=. 

L 
PERy 

L 
PERy + 1 

if LmodPERy <FWy 

if Lmod PER, £ FWy 

where 

and LCM is the least common multiple of all the periods of the periodic task set 

Proof: 

Condition 1) is basically Theorem 5 for the uniprocessor case. Conditions 2) and 

3) together say that for the set to be schedulable, the processor demand in the interval 

[OJJ (i.e., the sum of computation times from all instances that must finish in the interval 

[0.L]), must always be less than or equal to the length of L. As in Jeffay's work [JSM91], 

the contrapositive of Conditions 2) and 3) will be proven. To prove the contrapositive of 

Condition 2), consider a concrete set of periodic tasks {Ti, T2,..., Tn) where for 1 < X < 

n, the release time of the first instance of Task Tx = 0. Then, for every X, 1 < X <, n, and 

every k, 0 < k < -M^-.me processor demand, do,kxPER +FW , from all task instances that 
PbKx *    * 

must finish in the interval [0, kxPERx+FW J is given by 

<WER.*W = iN(y,kxPERx+FWx)xMETy 
*     *     y=l 

So if Condition 2) does not hold, then there exist an X and a k such that 

do.kxPER +FW > kxPERx+FW, and P has an unschedulable concrete set 

To prove the contrapositive of Condition 3), consider a concrete set of periodic 

tasks {T,, T2,.... Tn) where for some task Tx, the release time of its first instance is T, = 
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0, and for all Y * X, the release time of the first instance of task Ty = 1, as shown in 

Figure 3.4. 

T2 

T,, 

Tx 

Tx+1 

Tn 

i 

1     , 1 1 , . 

1       , 1        ■ 1 .  1 ■      1 .      1 
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o 

0 1 METX FWX time 

Figure 3.4. Different Task Release Time for Task X 

Since neither preemption nor inserted idle time are allowed, the first instance of 

task Tx must execute in the interval [0.METJ. For all L, FW, < L < FWX, in the interval 

[0,L] the processor demand doj., from all task instances that must finish by time L, is given 

by 

x-1 
doa. = METx+ 2 N(y,L-l)xMETy 

y=l 

So, if Condition 3) does not hold, then doj. > L, and P has an unschedulable concrete setO 

Note also that the function N(y,L) can also be expressed in closed form as follows: 

N(y,L) = L + min 

< 

L .1 PERy 
FWy + L 

PERy xPERy 
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The left hand side of the addition operator specifies how many full periods there 

exist for task y within L, while the right hand side specifies whether the remaining fraction 

of a whole period is large enough for a scheduling interval (i.e., FWy) of task Y. The 

minimum comes into play because if FWy < L/2 < PERy , it would contribute more than 

once for the processor demand in the first period, which cannot occur. 

As an example consider the task set Ti(8,45,20), T2(9,40,30), and T3(10,100,100), 

already sorted by FW. 

Clearly, n = 3 and the interval of interest is 20 < L < 100. 

Let i = 1, then L = 20, which is the trivial case. 

Let i = 2, then 20 < L < 30 

for20<L<30,   Lmustbe>9 + 8 0 

Let i = 3, then 20 < L < 100 

for20<L<30,   Lmustbe>10 + 8 0 

for30<L<65,    Lmust be £ 10 + 8 + 9 0 

for65<L<70,    Lmust be £ 10 + 8 + 8 + 9 0 

for70£L< 100, Lmustbe^ 10 + 8 + 8 + 9 + 9 0 

If the task set was not approved in all conditions, it could be said that there exist at 

least one concrete task, that could not be scheduled. Alternatively, if all conditions were 

satisfied, then nothing else could be stated before Theorem 7 is introduced. 

Theorem 7: 

"If an independent periodic task set P is schedulable according to Theorem 6, then 

the non-preemptive Earliest Deadline First (EDF) algorithm will be able to find a feasible 

schedule for P." 

Proof: 

As in Jeffay's work [JSM91] this theorem shall be proved by contradiction. 

Assume that a task in P misses a deadline at some point in time when P is scheduled by the 

EDF algorithm. Let t<j be the earliest point in time at which a deadline is missed. All 

instances of P can be partitioned into three disjoint sets Si, S2 and S3 where: 
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Si is the set of task instances with a deadline at W, 

S2 is the set of task instances with an invocation before td and deadlines after td, 

and 

S3 is the set of task instances not in Si or S2. 

Let to be the end of the last period prior to td , in which the processor was idle. If 

the processor has never been idle, then to = 0. Since neither preemption, nor inserted idle 

time are allowed, all task instances which are executed in the interval [to, td] must be 

activated at or after to . Depending on whether the interval [to, td] contains any task from 

the set S2, the following two cases exist: 

Case 1: None of the tasks in S2 are scheduled in the interval [to, td]. 

This case only happens if to = 0. Otherwise, we either have an instance that misses 

its deadline in the interval [0, to] if to -0 > td - to , or the processor has an idling period in 

the interval [to , td], if to-0 < td - to. Furthermore, td <, LCM. Otherwise, we must have 

another instance that misses its deadline prior to td. 

Let Ta be the task instance that misses the deadline at time td. Then, td - 0 = 

kxPER.+FW, for some k, 0 < k < ^^-. The processor demand, do^PERx+Fwx, from all 

instances which must finish in the interval [0, kxPERx+FWJ equals 

IN(y,k x PERX + FWX) x METV 
y=l ' 

and it is greater than kxPERx+FWx, a contradiction. 

Case 2: Some of the task instances of S2 are scheduled to run in the interval [to, td]. 

Let Tb be the last instance in S2 scheduled to run prior to td in the interval [to, td] 

and let t„ be the starting time of T„. The invocation time of all task instances scheduled to 

start in the interval [t^+l, td] must be at or after tu+1 and with deadline at or before td, 

otherwise the EDF algorithm wül not schedule T* to start at t*. Hence, the process 

demand for the interval [t«, td], dtu>t<J, must be bounded from above by the inequality 
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dt. *. < METX + I N(y, td - (tix+1)) x METy a'y y=l 

Since there is no idle time in [tu, td], and since a task missed a deadline at td, it 

follows that dtixjtd > td - tu- 

Let L = td - tu. Then 

FW!<L<FWX 

and 

x-l 
L < dtUttd < METX + I N(y, L-l)xMETy 

contradicting condition 3 of Theorem 6. O 

Note that Condition 3 in Theorem 6 is a sufficient but not necessary condition for 

schedulability of a particular concrete task set, as illustrated by the following example. 

Consider the task set Ti( 100,150,150) and T2( 100,300,200).   Clearly it does not satisfy 

Condition 2, a feasible schedule may still be found if their release times are zero. 

However, if the release time of T2 is changed by only one unit of time, then the set is no 

longer schedulable. 

Jeffay, et al. [JSM91], have shown that the problem of determining whether a 

feasible schedule exists for a particular concrete task set is NP-Hard. 

C.       THE HARMONIC BLOCK DILEMMA 

It is a well known and accepted result that the least common multiple (LCM) of 

the periods of a periodic task set provides a finite interval of time, for which a cyclic 

schedule can be calculated, if one exists, and repeated forever [Mok83]. 

Many interpret the above statement to mean that a cyclic feasible schedule must 

only exist in the closed interval [0.LCM], i.e., a feasible schedule for all tasks instances 

that must start in the interval [0.LCM] and complete execution by time LCM. Such an 

interpretation holds only if the first instance of every task T» is restricted to complete its 

execution by time PER».   But what if such a restriction is not desirable? It seems very 
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reasonable to allow the first instance of a periodic task to start within its period of 

activation but finish up to the end of the period plus its computation time, and actually this 

would be a veiy desirable property, if it could somehow improve the already difficult 

problem of non-preemptive scheduling. 

Consider the task set Ti( 190,600,600) and T2(20,200,200) with the precedence 

relation Ti < T2, as illustrated in Figure 3.5. 

OP! (190,600,600)  <     OP2 (20,200,200) 

LCM 2xLCM 

200 

Transient Schedule 

soo 1000 

Cyclic Schedule 

Figure 3.5. The Transient and Cyclic Schedules 

Clearly, no feasible schedule exists if the first instance of every task Tx is restricted 

to complete its execution by time PER,. However, if it is allowed to the first instance of 

every task Tx to start by time PER* and complete its execution by time PER* + MET», 

then a feasible schedule exists. Note also that the cyclic schedule no longer starts at time 

zero, but starts instead at time tc, and furthermore, there can be more than one task 

instance that does not finish by time 2xLCM, as can be illustrated by the task set 

T,(4,100,100), T2(2,5,5), T3(2,100,100) and T4(3,10,10), with precedence relations T, < 

T2<T3<T4. 

Here is where a novel approach on how to determine what is a suitable cyclic 

schedule comes into play.   The fundamental concept is that a feasible static schedule 
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consists of two parts: a transient part, which may be empty, followed by a cyclic part, 

which repeats forever. 

The next theorem, the Harmonic Block Theorem, although different from the one 

introduced by Zhu, et al. [ZLC94], was created after a careful analysis of their work, 

which does not correctly solve the problem The general direction of the proof will 

consist in showing that if the premises of Theorem 8 are satisfied, then there exists some 

time tc where a part of the schedule can be divided, with exactly the size of one LCM, 

where it is guaranteed that the correct number of task instances are present, and most 

importantly, that they all start and finish within that time interval, characterizing the cyclic 

part of the new schedule. 

Theorem 8: The Harmonic Block Theorem 

"If 3 an infinite feasible schedule S without any inserted idle time for a periodic 

task set P with precedence constraints, such that the first instance of every task, Tx in P 

must start by time PER*, then there exists an infinite feasible schedule S' consisting of a 

transient portion of length at most LCM, followed by a cyclic portion of length LCM that 

repeats forever." 

Proof: 

If there is no idling time period in the intervals [0.LCM] or [LCM,2xLCM], then 

the given set of periodic tasks P must have a load factor of 1, and the first instance of 

every task Tx must finish its execution at or before time Px in any feasible schedule. 

Hence, the segment of S in the interval [0,LCM] forms the cyclic portion of an infinite 

feasible schedule satisfying the Theorem. 

Suppose now that idling time exists in the intervals [0.LCM] and [LCM,2xLCM]. 

Let U be the end of the last period prior to time LCM in which the processor was idling in 

S, and let ti be the end of the last period prior to time t«+LCM in which the processor was 

also idling in S as shown in Figure 3.6. 
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Figure 3.6. Determining the Start Time tc of the Cyclic Schedule 

Assertion (1) 

Since no unnecessary idle time is inserted in our schedule S, it should be clear that 

there cannot be my first instances of tasks being activated after time tc, because otherwise 

they could have started execution before time tc. 

Assertion (2) 

Another important point to be made is that all tasks which start after time t, could 

not be activated before time t,, for the same reasons of non-inserted idle time in our 
schedule S. 

Assertion (3) 

Every task instance that is activated in the interval fo.fc+LCM) must finish its 

execution at or before tc+LCM. Suppose this claim is not true. Then there must exist 

some instances which are activated before tc+LCM and cannot finish at or before tc+LCM. 

Denote the collection of all instances which are activated in the interval [t, , tc + LCM) by 

X. It follows from assertion (2) that every instance in x must be activated in the interval 
[ti,tc+LCM). This implies that 

XMETü> tc+LCM-t, 
Ti,et 

Let if denote the set of task instances that are activated in the interval [t,-LCM,tc). 

It follows from assertion (1) that every task instance in x must have a corresponding 

instance in if. Thus Ixl <; 1x1, and   £ METix *   £   j^ 
Til«* Tiyex' y Ci) 
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Note that all instances in x' must finish within the interval [ti-LCM,tc], because tc is 

the end of an idling period. Hence, 

X   METjy < tc - (ti-LCM) = tc+LCM-t, (iii) 
TiyGt' 

From inequalities (i), (ii), and (iii), 

tc+LCM-ti <   XMETk < tc+LCM-ti, 
Tuet 

which is a contradiction. 

Assertion (4) 

All instances after tc are at least second instance and hence, for all tasks Tx within 

the interval [tc ,tc+LCM), there must exist jj-^  activations.   By assertion (3) they all 
PERx J 

finish within this same interval. The segment of S in the interval [tc ,tc+LCM) contains the 

correct number of instances. 

Concluding the proof, it can be said that the intervals [O.tJ and [tcW+LCM] of S 

form respectively the transient portion and the cyclic portion of the new schedule S\ 

satisfying the consequence of the Theorem □ 

As can be seen, by a proper choice of the start time of the cyclic portion of the 

schedule, one can increase the schedulability of tasks sets which were previously assumed 

to have no feasible schedule, when the cyclic schedule was restricted to always start at 

time zero. Note also that the same approach is valid for preemptive task sets. 

D.  A NOTE ABOUT PRECEDENCE CONSTRAINTS 

Every reference to the word precedence constraints between tasks is usually 

attached to the meaning of synchronization, in other words, if two tasks have some kind of 

precedence relation, then they must be synchronized. Furthermore, if their periods are 

different, then they should be synchronized at intervals corresponding to the least common 

multiple of their periods. But then, what is the real need for synchronization if there are 

cases where some data may well be lost? Does it exist only to enforce a fixed pattern on 

how data are lost, e.g., instances three from task X and two from task Y, six and four and 
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so forth will synchronize? These and other questions will be much further discussed in 

Chapter IV. 

We shall argue in Chapter IV that the major reason for synchronization is to 

guarantee timely processing of triggering data. We shall show that, by relaxing the upper 

bound on the delay in processing each instance of triggering data, we can guarantee that, 

even without explicit synchronization, each instance of the trigger data will be processed 

within an interval equal to two times the period of the consumer operator. The removal of 

the need for synchronization is particularly important in distributed systems, where 

synchronization mechanisms are very costly if not impossible. It is also desirable not to 

have synchronization in uni-processor systems, because now, we can treat each 

topological ordering of the tasks satisfying the precedence relationships as a concrete set 

of periodic tasks, where the starting time of task Tx is greater than or equal to the sum of 

the METy of all tasks Ty that are ancestors of Tx in the task graph. 

Note that if non-zero latency is present in the edges of the precedence graph, then 

we must further delay the starting time of the first instances of every task Y, so that Siy > 

maxfSu+METx+LATxy , Vparent operator Tx of Ty}, where LAT„y denotes the latency 

associated with the edge (Tx, Ty). 

In order for the arguments in the proof of Theorem 8 to hold, we need to choose U 

to be the end of the first idling period after time LCM, resulting in a Modified Harmonic 

Block Theorem that reads: 

Theorem 9: 

"If 3 an infinite feasible schedule S for a periodic task set P with precedence 

constraints, such that the first instance of every task, Ty in P must start by time PERy, then 

there exists an infinite feasible schedule S' consisting of a transient portion of length at 

most 2xLCM, followed by a cyclic portion of length LCM that repeats forever." 

Proof: 

The main difference when dealing with latencies, is that idling periods may exist 

before the starting time of the first instance of some task Tx in the schedule.  Theorem 8 
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still holds for this case, because the presence of idling time only affects the release time of 

the tasks, as long as PERy £ Siy £ max{ Su+MET^+LAT^}. However, for Theorem 8 in 

Section C, the cyclic portion of the schedule may now start after time LCM. The reason is 

because the schedule S may contain first instances in the interval [tc, tc+LCM], which was 

the key in our previous proof of Theorem 8. After these considerations, the same proof 

used for Theorem 8 can be applied to this case. O 

E.       COPING WITH APERIODIC TASKS 

Generally speaking, a sporadic task is defined as an aperiodic task that has a 

minimum duration between two consecutive activations. If that was not so, neither the 

static nor the dynamic approach could be used to guarantee schedulability. 

If interrupts are used to detect the occurrence of aperiodic events at run-time, then 

a dynamic approach should be used. However, in the static scheduling framework, where 

all the tasks requests must be known a priori, so that a fixed and static schedule can be 

generated, the only way to handle sporadic tasks where we do not know exactly when 

they are going to happen, is by using a periodic process to function as a polling device. Its 

main role is to check for requests of sporadic tasks and to serve them during its allocated 

time slot However, due to the random nature of aperiodic processes, we may not be able 

to handle a concentrated set of arrivals or even worse, not catch them at all with the 

sporadic server approach. To overcome this difficulty, several bandwidth preserving 

algorithms have been proposed. Among them could be mentioned the Priority Exchange, 

Deferrable Server and the Sporadic Server. [AB93] 

The CAPS approach was to use one sporadic server for each time-critical sporadic 

operator. This approach, although very restrictive, is the only way to guarantee that all 

time-critical sporadic tasks would be serviced in a timely fashion under the worst case 

situation. 

Therefore, the next step is to convert the sporadic operator into a periodic one so 

that all the original timing constraints from the sporadic operator are still satisfied. 

59 



1. The Conversion 

The term triggering period (TP) will be used for the period of the converted 

sporadic operator and the usual term FW for its finish-within. As shown in Figures 3.7 

and 3.8, basically two cases can occur: 

The first is when MCP < MRT - MET and the equivalent periodic operator must 

have TP < MCP in order to satisfy the original timing constraints. Also, must enforce that 

FW = MRT - MCP, so that in the critical case shown in Figure 3.7, the data that was 

missed by the previous triggering period can be consumed by the next TP and still finish 

within the original MRT. 

Case A 
MCP<MRT-MET 

New 
Dm 

TP sMCP 
FW sMRT-MCP 

SI 

MET 

l                                   1 * 

Triggering Period FW 

MCP               "' 

MR' r 

Figure 3.7. The Sporadic Conversion when MCP < MRT-MET 

The second case, shown in Figure 3.8, occurs when MRT - MET <, MCP. This 

more constrained situation forces a further reduction in the triggering period. Thus, the 

new TP should be TP £ MRT - MET and the FW should be equal to MET. 
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CaseB 
MCP>MRT-MET 

MCP 

Figure 3.8. The Sporadic Conversion when MCP £ MRT-MET 

In general, the triggering period should be 

MET < TP <, min(MRT - MET, MCP). 

Nevertheless, in order to minimize the impact on the load factor of the prototype, 

it is desirable that TP be as large as possible, meaning that 

TP = min(MRT - MET, MCP). 

Now, assuming that the values for TP and FW have been established, so that the 

original timing constraints of the sporadic operator are satisfied, let's see what kind of 

relations should exist between the original values, so that we could validate them. 

Clearly: 

• METSMRT (by Theorem 2) 

• METSMCP (byTheorem 1) Eq. (1) 

• MET£TP (by Theorem 1) 
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•         TP < MCP                 (for static scheduling)4 

•         MET<FW<TP       (Scheduling Model) Eq. (2) 
For case A: MCP < MRT-MET 

TP = MCP Eq. (3) 

and 

FW = MRT-MCP Eq.(4) 
Plugging (3) and (4) into (2), 

MET < MRT-MCP < MCP Eq.(5) 
From the right inequality of (5), 

MRT<2xMCP 

Plugging (1) into the left inequality of (5), 

MRT£2xMET 

For case B: MRT-MET < MCP 

TP = MRT-MET Eq.(6) 

and 

FW = MET Eq.(7) 
Plugging (6) and (7) into (2), 

MET <MET £MRT- MET Eq.(8) 
From the right inequality of (8), 

MRT£2xMET 
Also, 

MRT-MET^MCP    or    MRT-MCP^MET 

Plugging (1) into the above inequality, 

MRT-MCPSMCP    or     MRT£2xMCP 

Therefore the MRT for a sporadic operator must be upper bounded by twice its 
MCP and lower bounded by twice its MET, as follows: 

, only possible Otherwise we would have to be able to detect at run-time when new data had arrived 
with dynamic scheduling. 
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2 x MET £ MRT < 2 x MCP 

Note that when MRT assumes its lowest possible value, which is 2 x MET, the 

triggering period TP will also reflect its lowest possible value, which is MET, with FW 

still being equal to MET.  This case is illustrated in Figure 3.9. 

Worst Case 
MRT=2xMET 

MCP 

Figure 3.9. Worst Case Situation 

Note that in both cases the conversion of a sporadic operator results in very 

stringent timing constraints to the equivalent periodic operator. This will definitely have a 

great impact on the schedulability of the prototype. In the second case, for example, there 

is no slack time for the convened operator, since FW = MET. This forces us to remove 

out portions of MET from the schedule, where no other operator could be scheduled. 

Of course, the amount of slack time for this operator can be increased by 

decreasing its TP, but this will also increase the entire load factor. Basically, there exists a 

trade-off between load factor and slack time. How much to increase one in detriment of 

the other to increase schedulability is a very difficult question. 
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While this question does not have an answer, it does offer suggestions to help 

designers in finding solutions that best fit their needs. 

When converting a sporadic operator into an equivalent periodic one, the 

triggering period (TP) can range from a minimum of MRT/2, where the slack time is equal 

to MRT/2 - MET, up to a maximum value equal to min(MRT-MET, MCP), implying that 

the slack time is max((MRT-MET-TP), 0). 

TTV,     MET    MET   .       .     ,.„ 
First, define load factor contribution as LFC = —— , i.e., the difference 

TP       TPm» 

between the corresponding LF for a specific triggering period TP, and the load factor if 

TP were set to its maximum value. Within the interval MRT/2 < TP< min(MRT-MET, 

MCP), the slack time ST, which is the scheduling interval for the sporadic task minus its 

computation time, is defined as ST = MRT - MET - TP, as can be derived from Figures 

3.7 and 3.8. 

Clearly, when TP is rn?*imnm, the load factor contribution (LFC) is zero, in the 

sense that it cannot be increased any further. For the other values of TP, including those 

enforced in the conversions for the previous cases A and B, some considerations must be 

taken into account. Assume that MCP £ MRT-MET. Although it may appear at first that 

LFC varies with MRT, since TP is lower bounded by MRT/2, that is not the case, in other 

words, MRT only limits the valid range for TP. Figure 3.10 shows a family of curves for 

different values of MCP, and for a fixed value of MET and MRT. As explained earlier, 

LFC is insensitive to changes in MRT. 

The load factor contribution LFC, as previously defined, is a function inversely 

proportional to the triggering period TP, and that it wül decrease faster for periods less 

than TP =VMET , where its first derivative with respect to TP is equal to -Is. Note, 

however, that TP cannot be smaller than MET, meaning that TPC will always be located 

5 Care must be taken to the fact that the derivative at some point being equal to -1. does not imply 
that the slope equals 135° at that point, since both axes may have different scales, as shown in Figure 3.10. 
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to the left of any valid value for IP. The main conclusion is that different values of MCP 

have very small effect in the variation of LFC. Similar conclusion can also be drawn for 

the case where MCP < MRT-MET. Therefore, in any case, the consequence is that we 

always have the full range of TP, from MRT/ 2, up to min (MRT-MET, MCP) to change 

TP, without causing any harm to the load factor of the system. 

ISO 200 250 300 350 400 450 500 550 600 

Triggering Period 

Figure 3.10. Effects of TP on the Load Factor 

Note that the very first question remains unanswered, but now, the effects in the 

total load factor are more clearly understood when the triggering period is changed. 

2.        Important Remarks about the Conversion 

This first idea of conversion of sporadic operators was introduced by Mok 

rMok83] in his Lemma 2.3 which stated 

"Let M = Mp u M, be an instance of a process model. Suppose we 
replace every sporadic process T; = (Cj.pi.dO e M« by a periodic process T'j 
= (c'j.p'i.d'i) with c'i= Ci, p'i = min(di-Ci+l, pO and d\ = d. If the resulting 
set of all periodic processes M'can be successfully scheduled, then the 
original set of processes M can be scheduled without a priori knowledge of 
the request times of the sporadic processes in M,.'* 
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Note, however, that although the idea of the transformation is valid, care must be 

taken to see the context in which that sporadic operator appears, since some of its 

attributes, such as minimum calling period, are totally dependent upon the producer of the 

triggering data and not on the sporadic operator itself. In other words, if the producer of 

data for some sporadic task is an external event that will be handled by some kind of 

interrupt handler, then there will be no influence whatsoever in the generation of the data, 

and the minimum period will be obeyed by the external device. However, if the producer 

is another task that will be included in our static schedule, it must be assured that two 

consecutive instances of the producer operator will not be scheduled closer than the 

minimum period specified for the sporadic consumer. In this case, the transformation 

alone is not enough, and an additional restriction must be imposed on the producer of the 

data. This situation is depicted in Figure 3.11. 

In conclusion, it can be said that Mok's lemma by itself does not guarantee that a 

schedule really exists for the original set, even if the resulting set of all periodic processes 

M' can be successfully scheduled, unless as explained earlier, a restriction is imposed on 

the producers as well. 

Periodic 

©- 
(40.600.400) 

SI(n-l) = 400 

OPi, 

Sporadic 

(50.550.1000) 

I»* SBC 

Sl(n) = 400 

' OPI 

H h 

t_f 
A<MCP 

Figure 3.11. Restrictions on the Producer Imposed by the Consumer's MCP 
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3.        Implementations Issues about the Conversion 

When implementing this conversion it is strongly recommended that a careful 

analysis of the task graph be made to determine reasonable bounds for the period of the 

transformed sporadic operator. At first glance, an obvious upper-bound is the value of its 

MCP. However, for lower-bounds this choice is not so clear. Nonetheless, it is assumed 

that after this pre-processing there will be an interval of possible values for the period of 

the transformed sporadic task. The reason for these bounds is to provide us with some 

margin for making the conversion, so that the final harmonic block of the entire set is not 

increased significantly. 

Given a set of sporadic operators, the following steps are suggested for the final 

choice of their periods: 

1) Set the period of every sporadic task to its upper-bound, so that the total load 

factor is minimized 

2) Try to find a feasible schedule for the entire prototype (if this is not possible 

pick one sporadic task) 

3) Start decreasing its period; 

4) For each new period check for schedulability; 

5) Proceed until its lower-bound is reached. If no schedule is found reset its period 

to the upper-bound, pick another task and go back to step 3; 

Another possible heuristic is to assign the smallest period among the periodic 

operators which is closest to but smaller than the upper-bound of the sporadic operator, 

and then proceed with the schedulability tests. One could also try to minimize the 

harmonic block. As can be seen, there are several possible heuristics, but there is no 

optimal solution. Nevertheless, it is understood that, due to the very stringent timing 

constraints resulting from the conversion, every possible attention should be given to this 

step. 
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IV.  DISTRIBUTED SCHEDULING 

A.       INTRODUCTION 

For uniprocessor systems,  most  scheduling problems  involving precedence 

constraints can be solved in polynomial time.   Lawler [Law73] showed that scheduling 

non-preemptable tasks with unit computation times, deadlines, and arbitrary precedence 

constraints can be accomplished using the Latest Deadline First Algorithm in 0(n2) time. 

Similar results were obtained by Lageweg, Lenstra, and Kan, even for tasks with an 

arbitrary computation time, if the release times were assumed to be zero for all tasks. 

Blazewicz [Bla76] proved that, for this scheduling problem, a preemptive schedule exists 

if and only if a non-preemptive schedule exists. Therefore, in this case, preemption need 

not be considered. Blazewicz also demonstrated that the Earliest Deadline First algorithm 

can also be used to schedule preemptable tasks.  The only scheduling problem involving 

precedence relations that has been proven to be NP-complete is the non-preemptable case, 

where no restrictions are placed on the release times nor on the computation times. The 

non-preemptable case is also NP-complete if there are no precedence relations among the 
tasks [GJ77a]. 

Scheduling tasks with precedence constraints in multiprocessor systems is much 

more difficult than doing so in uniprocessor systems. For example, scheduling tasks with 

arbitrary precedence constraints and unit computation time is NP-hard both for the 

preemptive and the non-preemptive cases [U1175, U1176]. 

Many researchers have attempted to develop efficient heuristics algorithms to 

solve the general problem, but with limited success. In most cases, the researcher ended 

up restricting the solution space for specific cases, such as when the task graph is a forest, 

or when there are no precedence constraints. 

In general, two different approaches to handling distributed computation can be 

identified. In the first, the distributed system is coordinated by a single system clock, 

which synchronizes all tasks so that computation progresses in a lock-step fashion, and 
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communication between tasks can only occur at specific times. In the second approach, 

tasks are synchronized only when necessary, and do so by executing appropriate hand- 

shake protocols. The former approach requires less inter-processor communication, but is 

rigid, and relies on a global clock whose implementation is by itself another very difficult 

problem to solve. The latter approach, although more flexible, dramatically increases the 

complexity of the synchronization problem, and may be very costly in terms of 

communication, since many acknowledge signals must be exchanged in order to maintain 

proper synchronization. The use of rigorous and more constrained riming requirements 

allows for the establishment of a weak form of synchronization among the tasks of the 

distributed system, and represents an alternative in the middle [Mok83]. 

B.       ARCHITECTURAL ISSUES 

This section is not intended to present an in-depth analysis of the effects of the 

architecture on distributed scheduling, but merely to introduce some of the problems so 

that the reader may be aware of their existence and importance. 

In a distributed environment, it is very likely that one will have to deal with 

heterogeneous computers, each one with a different clock, different memory systems, and 

so forth. It is therefore important to realize how these attributes can affect scheduling. 

1.        Different Clocks 

The precision of a clock is directly related to its granularity, the minimum number 

of ticks it can handle, and the quality of its time reference, which is usually based on some 

kind of crystal. The first limiting factor imposed by the clock, therefore, is the minimum 

acceptable period. This is not, however, an actual limitation, since typical clocks range 

from tens to hundreds of megahertz, providing an order of nanoseconds for the minimum 

allowable period. The real problem is that clocks can drift among themselves, causing a 

variety of synchronization problems. Maintaining an accurate global clock is one of the 

most challenging tasks in the distributed processing arena. Usually this is achieved at the 

cost of substantial overhead in communications. 
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2. Speed of CPUs 

The net result when different processors are present is a different execution time 

for the same piece of code when running in the various processors. This factor 

necessitates previous knowledge of allocation by the scheduler, so that it can be taken into 

account. Within CAPS, this is accomplished automatically, because a kind of simulated 

time is used for scheduling, which is scaled according to the speed of the machine on 

which it runs. 

3. Memory 

Issues like cache size, paging, number of pipelining stages, etc., can affect the 

overall throughput of the system, and consequently the timing requirements, but hopefully 

all of these different delays are already taken into account by the specified maximum 

execution time of the task. 

4. The Communication Media 

This is one of the most important factors in dealing with distributed systems, and 

can greatly affect final timing requirements for the application. Note also that the timing 

requirements are affected not only by the actual transmission delay, but also by the 

operating systems functions invoked on behalf of the applications. In CAPS, for example, 

although there is a time-bounded protocol (FDDI) it is still necessary to make calls to the 

underlying Unix operating system, which has no support for real-time applications. 

5. Interconnectivity 

The number of processors, the distance by which they are separated, there abilities 

to communicate with one another, etc., are issues that should be raised before tackling the 

scheduling problem 

C       THE PROBLEM STATEMENT 

To reiterate, the original objective of this research was to find better methods of 

supporting efficient and reliable scheduling of distributed hard real-time systems. 
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It is unquestionable that the ideal real-time distributed system should be able to 

support groups of tasks running asynchronously in different processors, each processor 

having its own internal clock. An additional goal, despite the precedence relations among 

the tasks, would be to eliminate the need for enforcement of any kind of synchronization 

required for communication. An even more important goal would be that all the deadlines 

and other requirements (such as no loss of data, etc.) could be met. 

Being aware of the complexity of the message routing problem described in 

Chapter I and reviewing the alternatives presented in Section A, it appears to be that the 

best available option to achieve the ideal system is the very last alternative, i.e., to sacrifice 

timing constraints in order to decrease scheduling complexity. Unfortunately, that is not 

the current trend in most researches in the field of distributed scheduling today. 

Researchers are still trying to find better heuristics to scheduling algorithms so that the 

timing complexity for a sub-optimal case is decreased by some constant factor. But, due 

to the NP-Hard nature of the problem, it is most likely that some restrictions will be 

imposed on the initial problem. 

This work moves in the other direction, in other words, investigating ways of 

restricting or relaxing the timing requirements so as to increase the chances of finding a 

feasible schedule. It is understood, however, that, depending on the application, this 

approach may not be practicable. It may well be that most of the timing requirements 

cannot be changed at all. However, this is most likely untrue for most cases. Especially in 

this applications framework, where the user is prototyping the intended system in the early 

stages of its life cycle, there is an opportunity to validate and change the system's 

requirements, which makes this approach very attractive. Note, however, that this 

discussion is not about missing deadlines or employing imprecise computations [LLS91], 

but focuses simply on relaxing timing constraints so that no synchronization is needed, and 

consequently decreasing substantially the complexity of the distributed scheduling 

problem. 
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The next section addresses the underlying semantics behind all possible 

combinations of triggering conditions, stream types and operator types within a valid 

PSDL program, so that later, when discussing the major synchronization issues, it is 

certain that all cases have been covered. 

D.       SYNCHRONIZATION IN PSDL 

There are two kinds of streams in PSDL, Sampled Streams (SS) and Data Flow 

Streams (DF). Note, however, that within the former are two semantically different sub- 

types of streams, depending on the triggering condition of the consumer operator. If the 

consumer operator is not triggered (NT) by any data, then it should be understood that a 

specific data value can be lost or overwritten, or even read over and over again by the 

consumer, without any harm to the system This type of behavior is very useful when 

reading sensor data. In most cases, the sensors will be able to generate data in a much 

higher rate than the consumer will read it, but the most recent data is of primary interest. 

Even for tracking systems, where the history of data values is very important, this kind of 

stream is still very useful Note in Figure 4.1 that a specific value at some previous time t 

is not relevant, because the consumer is only interested in the average behavior, so that the 

filter algorithm can predict the future position of the target In this kind of situation, no 

synchronization is needed, releasing the producer and consumer operators from any 

constraints on their periods. 

RANGE 
D     dai produced by the RukrExnaianUnii 
■    dm icad by the (yuan 

n 

TIME 

Figure 4.1. Typical Radar Data 

73 



The second type of Sampled Stream exists when the consumer operator is 

TRIGGERED BY SOME (TBS) data value. By definition, the consumer with this 

triggering condition should always catch a new piece of data if it is from one of the 

streams specified in the TRIGGERED BY SOME clause. For example, if some operator 

OP1 is TRIGGERED BY SOME X, Y, then, if new data is coming from either X or Y, it 

should be guaranteed to be read, and not lost or overwritten. 

Although buffer overflow or underflow is not an issue, due to the way sampled 

streams are defined, the only way to avoid loss of data in this case is to enforce the 

condition that PER   .     > PER        , and, consequently, the synchronization problem 
producer consumer ~ J J r 

will have to be handled accordingly. 

Finally, in the case of Data Flow Streams, where the consumer is TRIGGERED 

BY ALL, the inputs specified in the TRIGGERED BY ALL clause for new data should be 

examined, and if all of them happen to have new data in their buffer, they should be 

consumed, firing the operator. The TRIGGERED BY ALL condition can be thought of 

as being a logical AND among the streams declared in the TRIGGERED BY ALL clause. 

Clearly, in this case, there is also a need to enforce PER .     £ PER so that no data 
' producer consumer 

is lost, and once again the synchronization problem must be handled explicitly. 

The basic semantic difference between the TRIGGERED BY ALL data flow 

streams and the TRIGGERED BY SOME sampled streams is that if for any reason the 

data is not consumed and another piece of new data arrives, in the former it will raise a 

buffer overflow exception, while in the latter the data will be simply overwritten. 

E.       DEALING WITH SPECIAL CASES 

Data flow streams are currently implemented in CAPS as a FIFO queue of buffer 

size one. This imposes an important restriction on the PSDL program, that is, all 

producers of data flow streams to some unique consumer should have the same period, or 

a FIFO buffer overflow may occur in one of the streams, even if the condition 

PERproducer > PERconsumer ^ satisfied (Figure 4.2).  This happens because OP1 may 
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write twice before 0P2 outputs some value so that the triggering condition can be 

satisfied. This problem usually reflects a possible design error, because it makes no sense 

to have an operator being triggered simultaneously by two data events that are produced 

with different rates. A possible and recommended solution is to force all producers of 

data flow streams to a unique consumer to have the same period. 

woo.-) (■.1000.-) 

woo.-) 

Figure 4.2. Producers with Different Periods 

Another important issue is that, although it is semantically correct in PSDL to have 

several operators writing to the same data flow stream, or even to the same TRIGGERED 

BY SOME sampled stream, as illustrated in Figure 4.3, this case cannot be handled unless 

an upper-bound is placed on the number of concurrent copies of a stream in a PSDL 

program. This restriction is due to the fact that streams have limited buffer size, and if the 

number of copies is very large there is no way to guarantee that one operator will not 

write to the stream right after the other, and therefore cause an overflow. In the 

uniprocessor case, the only way to handle this problem is by imposing very hard 

restrictions on the period of the consumers, so that it will be limited to, at most, half of the 

minimum MET of the producers. This result may be seen as an extrapolation to this case 

of Nyquist's well known sampling period theorem. Currently, CAPS does not enforce this 

condition. 
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Figure 4.3. Potential Overflow Situation 

Still, due to the powerful semantics of PSDL, there is another problem to solve, 

which is the possibility of the same stream being data flow for some consumers and 

sampled stream for others, as illustrated in Figure 4.4.   To make things worse, these 

streams can even have different latencies. 

Figure 4.4. Different Stream Types Combination 

Actually, there are some other cases that could also be cleverly checked, so that 

users could receive some suggestions and warnings about their design, like for example in 

the case illustrated in Figure 4.5, where OPi could have its period increased and 

consequently lowering the load factor, since it will not do any good to keep its period 

smaller than OP2. 
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Figure 4.5. Period Incompatibility among Operators 

As one can expect, the above cases make the validation process of a PSDL 

program very complex. For the sake of completeness, the semantic checks and stream 

type derivations for all possible combinations of operator types and data triggering 

conditions in PSDL are listed in Table 4.1. The actions which should be taken by the 

scheduler for each one of those possible combinations will also be presented. 
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-:K?::Type;i|:*OPl:; OP2 Data Trigger X ■Y:'< :?::,:Z'" Action/Check OBS 

TC-TC 

P P ByAHX,Y DF DF SS If PQPJ < Paulen Error 1 
P P BySomeX,Y SS SS SS If POP! £ Poßthen Error 2 
P P None SS SS SS "oP2= max(Popi •''ore) 
P S ByAllX,Y DF DF SS OP2.upper= min(OP2.upperJ>) 1,3 
P s BySomeX,Y SS SS SS OP2.upper = min(OP2.upperJ>) 2,3 
P s None SS SS SS Error Cannot be Sporadic 5 
S p ByAllX,Y DF DF SS OPl.lower = 

max(OPl.lower J>) 
1,3 

S p BySomeX,Y SS SS SS OPI .lower = 
max(OPl. lower J>) 

2,3 

S p None SS SS SS 5 
S s By All X,Y DF DF SS OPI .actual £ OP2.actual 1,4 
S s BySomeX.Y SS SS SS OPl^ctual £ OP2.actual 2,4 
S s None SS SS SS Error Cannot be Sporadic 5 

TC-NTC 

P NTC By All X,Y DF DF SS Error: Cannot be Data Flow 1 
P NTC BySomeX.Y SS SS SS Error Possible Data Loss 2 
P NTC None SS SS SS 
S NTC ByAllX,Y DF DF SS Error Cannot be Data Flow 1 
S NTC BySomeX,Y SS SS SS Error Possible Data Loss 2 
S NTC None SS SS SS 

NTC-TC 

NTC P By All X,Y DF DF SS Warning: Possible Overflow 1,6 
NTC P By Some X,Y SS SS SS Warning: Possible Data Loss 2 
NTC P None SS SS SS 
NTC S By All X,Y DF DF SS Warning: Possible Overflow 1,6 
NTC S By Some X,Y SS SS SS Warning: Possible Data Loss 2 
NTC S None SS SS SS Error Cannot be Sporadic 5 

NTC-NTC 
NTC NTC By All X,Y DF DF SS 1,7 
NTC NTC By Some X,Y SS SS SS 2,7 
NTC NTC    None SS SS SS 

Table 4.1. PSDL Data Triggering Semantic Table 

LEGEND 

TC-Tane-CnocalOpormor 

NIC » Noo-Tans-Cmacal Operator 

P-PenocbcOpamux/Pmod 

S " Sporadic Opetaor 

SS - Stapled Stream 

DF - Dai Flo» Soon 

In Table 4.1, "upper" and "lower" represent, respectively, the maximum and the 

minimum values the equivalent period of the sporadic operator can assume. They are 

initially set, respectively, to infinite and zero. "Actual" is the value of the triggering period 
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of the sporadic operator after the conversion is done. As can be seen in Table 4.1, in all 

TRIGGERED BY ALL cases it is necessary to prevent, or at least give warnings, 

whenever the producer operator is faster than the consumer, so that no loss of data or 

overflow will be incurred [Table 4.1(1)]. Similarly, in the TRIGGERED BY SOME 

cases, this constraint must also be enforced, but in this case the motivation is to prevent 

loss of data, since Sampled Streams, by definition, do not overflow [Table 4.1(2)]. 

When dealing with sporadic operators upper and lower bounds are defined for 

their triggering periods, so that later, when conversion of the sporadic operators to 

equivalent periodic operators takes place, it is certain that all of these constraints are taken 

into consideration [see Table 4.1(3)]. The sporadic to sporadic case (S-S) cannot yet be 

handled with upper and lower bounds, since there can be up to five different possible 

overlapping patterns for their period interval. Hence, final checking of this case will be 

delayed until the equivalent periods have been calculated [Table 4.1(4)]. 

Another important point to mention is that consumers with no data triggering 

condition must be periodic, or an error will be raised [Table 4.1(5)]. 

Finally, although very unlikely to happen, it should be pointed out that it may 

happen, for unexpected reasons, such as a lot of slack time left over from the static 

scheduler, that some non-time-critical operator may be fired more than once in the same 

Harmonic Block, leading to a possible overflow if they are connected by data flow streams 

to time-critical operators [Table 4.1(6)]. This is not a concern among NTCs, since all of 

them will be executed consecutively, in other words, between two consecutive instances 

of any NTC operator is guaranteed to have an instance of all the remaining ones [Table 

4.1(7)]- 

Table 4.2 presents all possible combinations of the PSDL timing constraints and 

the resulting actions and checks to be performed by the scheduler. 
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SPORADIC PERIODIC OPERATOR TYPE ACTIONS/CHECKS 
*::METi: MRT MCP PER ■:V::FW.--: ■ 

N N N N N NTC 
*' i* i* N S ERROR » H It S N ERROR 
M H M S S ERROR 
tf N s N N ERROR 
** M " N S ERROR 
" H " S N ERROR 
M tt M S S ERROR 
M S N N N ERROR 
n H M N S ERROR 
N ft H S N ERROR 
H M M S S ERROR 
M s s N N ERROR 
♦» H M N S ERROR 
" M M S N ERROR M M M 

S S ERROR 

s N N N N SPORADIC Auto-Pick MRT and MCP n M H 
N S ERROR 

*f M H 

S N PERIODIC FW=PER 
" ** •' S S PERIODIC METSFWSPER 

N s N N SPORADIC MCP^MET; MRT=MET+MCP 
M M ** N S ERROR (• n M S N ERROR 
N M M S S ERROR 
M s N N N SPORADIC MRT2MET; MCP=MRT 
** t* •* N S ERROR 

M M S N ERROR 
** " S S ERROR 

" s s N N SPORADIC METSMCP; METSMRT 
" " •* N S ERROR 
*" •• •* S N ERROR . ** S S ERROR 

Table 4.2. PSDL Timing Constraints Semantic Table 

LEGEND 
N = No» Supplied 

S = Supplied 

Table 4.2 shows that veiy few combinations of PSDL timing constraints are 

semantically acceptable. The only one that deserves some explanation is the case where 

only the MET is supplied In this case, the scheduler picks up a pair of values for MCP 

and MRT, so that the individual load factor of the sporadic operator is equal to 

max((0.75-XLFPER),0.1) 
# of sporadic operators 
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This approach relieves the designer from having to define timing constraints for 

sporadic operators, which might not be clear yet, at that stage of the prototyping, and it 

also tries to decrease the timing requirements for that sporadic operator. However, it is 

dangerous, in the sense that it will always increase the load factor of the prototype to at 

least 0.75, even if the total load factor for all periodic operators was very low. 

As is apparent, most of the semantic checks, mainly those related to the control 

constraints part of the PSDL program, such as data triggering checks and timing 

constraints checks, are left up to the scheduler to implement. It is proposed that in the 

future CAPS releases some of these checks are taken from the scheduler and inserted into 

the Syntax Directed Editor (SDE), so that the user is not allowed to proceed to the 

translation step until he has a valid PSDL program. In doing so, the designer will not have 

to come all the way back to SDE if a semantic error is found. 

F.       TACKLING THE SYNCHRONIZATION PROBLEM 

It is clear that the most important issues in dealing with synchronization are the 

periods of producer and consumer tasks. However, even in the uniprocessor case, with the 

period of the consumer being smaller than the period of the producer, it can be easily 

shown that the synchronization is not always a good alternative. Figure 4.6 shows an 

example where no feasible schedule exist if synchronization is enforced, but it does exist 

otherwise. Three outcomes are possible if the synchronization is not required. First, if the 

consumer operator is TRIGGERED BY ALL X.Y , the proposed schedule is valid but X 

and Y will be consumed one instance later. If it is TRIGGERED BY SOME X.Y , then 

the schedule is always valid, because X and Y do not need to be consumed together. 

Finally, if there is no trigger, then the relative order is not important anyhow. 
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(50,500,500) 

(10,100,10) 

with synch 

P    P    P 
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w/o synch 

P    P    P * 
0        100      200      300      400      500      600       700 

Figure 4.6. Reason for No Synch when PER,„d ^ PER«,,, (Uniprocessor Case) 

From another perspective, if PER^^ < PER^^^,men tne streams connecting 

them should be sampled streams, because otherwise the data flow streams would 

overflow. Since the loss of data is possible("possible" because the data might well not be 

produced at all) the consumer cannot be TRIGGERED BY SOME either. 

The only case in which PER_,.    < PER can be allowed is when there is no ■' producer «ww^r 

trigger at all. In this situation, synchronization is not needed, since it would place one 

additional burden on the scheduler, and would not solve the problem of loosing data. The 

only advantage to having synchronization points in this case is the fact that there would be 

a fixed pattern for losing data. Furthermore, by not having explicit synchronization, the 

most that could happen is that the consumer operator would read either the previous or 

the next instance of the data output by the producer, in other words, at most one producer 

period apart. 
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Periodic Periodic 
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The second possibility is PER,.    £ PER r J producer 

Hgure 4.7. Reason for No Synch when PER^ < PER«», (Distr. Case) 

r. In this case, the synchronization 

also does not solve the problem, since it is possible to have two instances of the producer 

operator being scheduled, one after the other, causing overflow or loss of data depending 

on the triggering condition. This case is illustrated in Figure 4.8. 

Periodic Periodic 
DF OP1 OP2 

(70.500.500) 

OP1 
9MOC1) 

on 

_ps9L 

(70,200,200) 

OVERFLOW 

'I 
Efn 

SOD 1000 

synch synch 

«00 MB 1X0 

Figure 4.8. Reason for No Synch when PERp«» 2: PER«», (Distr. Case) 

At first, one may conjecture that no synchronization is needed when PER 
producer 

H^cotuumer' since it would be possible to catch every single occurrence of data ever 
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produced. However, this conjecture is untrue, due to the fact that the periodic input is not 

periodic in the common sense that is understood in electrical engineering and other related 

fields, as a pulse that occurs every t units of time! 

Figure 4.9. Synchronization among Periodic Operators when FWA = META 

If that was so, the period ratio among producer and consumer would be a 

necessary and sufficient condition for guaranteeing synchronization, according to the 

following argument: 

Assuming that PERB < PERA (Eq. (1)) and that the phase of operator A is zero, 

there could be two cases: 

1st case: start of second instance of B is less than finish of second instance of A 

S2B<f2A- Eq.(2) 

In this case B just lost A, and therefore it is necessary to prove that the third 

instance of B will certainly catch the second instance of A. Formally 

S3B<f3A 

By the definition of periodic operator, and from Eq. (1), 

S2B<SJA 

But also, 

s3B = s2B.+ PERB 

and 

s3A = sM + PERAorf3A = f2A + PERA 

Eq.(3) 

Eq.(4) 
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Plugging equations (1) and (2) into (3), 

s3B<f2A + PERA Eq. (5) 

Finally, combining (4) and (5), 

S3B<f3A □ 

2nd. case: s^ > f^. Trivial case where the second instance of B will catch the 

second instance of A. O 

In general, sffl < s^ implies s(i+1)B < s^m and hence, neither loss of data or buffer 

overflow can happen. 

However, as explained before, this periodic definition is slightly different, in the 

sense that it may occur anywhere inside the period slot, invalidating our previous 

argument 

Within this framework, things are made much more complex, and the 

synchronization approach needs to change considerably. 

The key question to be answered is: What is the real need for synchronization 

between two operators, and when is it applicable? As shown in the previous examples, 

the synchronization is not solving the problem and it is placing an additional burden on the 

scheduler. 

Other question to be asked is: 

Can every single piece of data coming from both data flow streams and from 

TRIGGERED BY SOME sampled streams be guaranteed to be consumed in a timely 

fashion, so that no overflow or loss of data occurs? 

The answer is clearly yes, if after scheduling each producer of a data flow or 

TRIGGERED BY SOME sample stream, the consumer of that data flow stream, or of 

that sampled stream, is scheduled before the next instance of the producer. 

In a uniprocessor case, or even in a shared memory multiprocessor model, this 

approach is acceptable and easy to implement and guarantee. This, by the way, is how it 

is implemented right now in CAPS.   However, in a truly distributed case, besides the 
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difficulty in implementing this approach, the lack of a master clock might cause a feasible 

schedule to become unfeasible. This assertion may be illustrated with a simple example. 

Assume a schedule for a two-processor system that meets all deadlines and 

synchronization requirements among their tasks, and that no buffer overflow occurs with 

respect to the data flow streams. Now, if clock drift occurs in processor 2, so that one of 

its consumers gets shifted more than twice the period of its correspondent data flow 

producer, the consumer is guaranteed to lose data, and the schedule will fail. 

Therefore, although the uniprocessor and the shared-memory multiprocessor cases 

can be handled appropriately, a new approach must be developed for the distributed case. 

Ideally, several sets of communicating processes would run independently in each 

processor, but with the guarantee that no data would be lost and no deadlines missed. 

It will be useful to review the synchronization problem between producers and 

consumers. What is the real meaning of missing a deadline within the context of a real- 

time system? It means that some process did not generate its output within the specified 

amount of time, and therefore the consumer could not consume the data, and so on. What 

is important here is that missing deadlines are always attached to data not being generated 

or consumed in the proper timing, and this is going to be the key-point in the approach, 

i.e., attempting to guarantee that all data being generated is consumed in a timely fashion. 

Clearly, the very first condition that must be satisfied is that PERp^,^ £ 

PER so that no data is lost It also seems obvious at first, that the worst case that 

can ever happen is when two consecutive instances of the producer are fired one after the 

other, and the consumer is scheduled about two periods apart. Unfortunately this is not 

true, as illustrated by the following Figure 4.9. 
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PRODUCER A 

Hfl 

CONSUMER B 

Figure 4.10. The Consumer-Producer Paradigm 

Figure 4.10 shows that even with a faster consumer (PERB ^ PERA) one cannot 

discard the possibility of having more than one, actually even three occurrences of the 

slower producer between two consecutive instances of the consumer. This finding raises 

the following additional questions: 

1) Under what conditions could that happen? 

2) Is there an upper-bound on the number of instances of producers between two 

consecutive instances of the consumer? What would it be? 

To answer these questions, analyze carefully Figure 4.10. 

By construction: 

PERA + 2 x META £ 2 x PERB 

and 

PERB^PERA 

By definition of periodic operator 

OSMETASPERA 

By re-arranging Eq. (1) 

PER 
METASPERB r-1 

Eq.(l) 

(Initial Assumption) 
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PER 
Thus, PERB must be £ —-— or otherwise META would have to be negative. 

Therefore we end up with the following solution interval for PERB: 

PERA 
<PERB<PERA 

and consequently 

0 £ META £ 
PER, 

The above inequality answers the first question by showing under what conditions 

the situation depicted in Figure 4.10 can happen, i.e., whenever META < 
PERA 

To answer the second question, let us assume the situation presented in Figure 

4.11, where four instances of the producer are attempting to exist in between the same 

two instances of the consumer. 

PRODUCER A 

CONSUMER B 

Figure 4.11. Seeking for an Upper-Bound 

Eq. (1) now becomes 

2XPERA + 2XMETA<2XPERB 
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Now let META = 0, which is the best case possible. This results in PERB > PERA. 

But then there is no solution for the set of inequalities, i.e., three is actually the upper- 

bound. 

Based on these results the following lemmas can be stated: 

Lemma 1: 

"Given a pair of operators, where one is a producer and the other is a consumer, 

and assuming that the period of the producer is bigger than the period of the consumer, 

there can exist at most three instances of produced data waiting to be consumed at any 

instant of time". 

Lemma 2: 

"Any produced data will be consumed within at most two periods of the 

consumer". 

Finally, these lemmas allow the Fundamental Synchronization Theorem, that 

will be most useful in the distributed case, but that can be applied as well in the 

uniprocessor case. 

Theorem 9: 

"If there exists a feasible schedule that runs without buffer overflow or loss of data 

in a shared memory multiprocessor model, then there can be a distributed and totally 

independent schedule, without any kind of explicit synchronization, if the buffer size of the 

data flow streams, as well as for the sampled streams with a triggered by some condition 

have a size of three." 

1.        Additional Restrictions Imposed on the Timing Constraints 

Obviously, a price is paid for getting rid of the synchronization, and it is reflected 

in a more stringent set of timing constraints for tasks. 

Looking back at Figure 4.10 it can be seen that the worst case that can happen is 

to have some data from a producer consumed after 2 x PERB - METB units of time. 

Currently, in PSDL, contrary from the sporadic case, there is no upper-bound on 

the time an input data for a periodic operator should be consumed. So, if the consumer is 
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a periodic operator that receives data from network streams, the fact of not using 

synchronization, will not impose any additional constraints on their timing requirements. 

In the sporadic case however, the explicit upper-bound for consuming the 

incoming data is its MRT, which is assumed to be greater than or equal to the latency plus 

the MET of the consumer operator for the incoming data. Therefore, an additional 

restriction on the triggering period of a sporadic operator must be imposed when it has 

any data coming from network streams. 

PRODUCER A 

IP if 

■JIHILM 

LAT 

CONSUMER B 

Knfflj 

PERg 
-*4 

PERß 

MR' 
*» 

Figure 4.12. New Timing Constraints for the Sporadic Operator 

From Figure 4.12 

2 x TPB + LATMAX £ MRTB 

or 

_   ^ MRTB     LATMAX 
1**—2 2~~ 

which is the new upper-bound for the triggering period of a sporadic operator. 

From Chapter DI, Section E, it is also know that TP £ MET.   Hence, 
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xyrcT  ^TD  ^ MRTB      LATMAX 
METB ^ TPB £ 

2 2 

which is the new formula for calculating the triggering period of a sporadic operator, 

under the no synchronization assumption. 

G.       THE TASK ALLOCATION MODEL 

Two basic and unavoidable steps when designing distributed software systems are 

the decomposition of the system functions into software processes during the early stages 

of the design and, later on, the allocation of these processes to the several processors. 

Although sometimes these two steps are used interchangeably, they are very different 

activities. 

Given the software requirements, the designer must first identify a set of logical 

interrelated modules and perform its functional decomposition. This can be done with the 

aid of traditional design methods, such as structured and object oriented design. For real- 

time systems, such decomposition will require consideration of critical timing constraints 

and may require introduction of special modules for synchronization [SW89]. 

The first major activity is partitioning, which is the mapping of these logical 

modules into a set of physical processes. The second is allocation (sometimes called 

assignment) which is the mapping of each process to one or more processors. The focus 

of this chapter is on allocation; for further reading on partitioning see Shatz and Wang 

[SW89]. 

As shall be seen, task allocation dramatically complicates the already complex 

problem of distributed software design, because assigning m processes onto n processors, 

there are nm different possible assignments. Optimal allocation is a problem of exponential 

complexity, and it was proven to be NP-complete by Mok [Mok83]. 

The key to process allocation is to establish an allocation model in terms of a cost 

function and additional constraints that match the application requirements as far as logical 

and timing correctness. The goal is to rmnimize the cost function under the constraints. 
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Most of the cost functions found in available literature deal with performance.   Others, 

such as those relating to reliability and fault-tolerance, are only now emerging [SW89]. 

The most widely used performance cost functions are: 

1) Interprocessor communication cost (IPC) which is a function of the amount of 

data transferred, the network topology and link capacity; 

2) Load balancing, which is a measure of how uniform the workload among the 

processors is. A good load balancing will maximize the system stability, which 

is the capability of busy hosts to receive bursty arrivals of processes without 

compromising their deadlines. 

3) Completion time, the total execution time including interprocessor 

communication incurred by that processor. 

The most frequent constraints found in typical real-time systems are due to 

hardware limitations of some processors, dependence of some processes on certain 

processors, and number of available processors. 

The choice of a cost function obviously depends on the application, on the 

underlying hardware, and on several other characteristics. 

Although distributed processing seems very attractive, one should be aware of the 

saturation effect (Figure 4.13) that is sometimes forgotten by many developers. The basic 

consequence of this effect is that, contrary to expectations, the throughput doesn't 

increase linearly as the number of processors is increased Actually, at some point (which 

can be as few as three or four processors) throughput actually starts to decrease. 

Examples of this phenomenon are documented by Chu, et aL [CHL80] and by Jenny 

[Jen77]. The decrease in throughput is due to the excessive interprocessor 

communication, which is similar to the trashing problem in the early memory paging 

systems. 
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THROUGHPUT 

IDEAL. 

ACTUAL 

«•(PROCESSORS 

Figure 4.13. The Saturation Effect 

Basically, all of the different approaches to solve the allocation problem fall into 

one of the three major classification areas: graph theoretic, mathematical programming, or 

heuristic methods, which are by no means mutually exclusive. 

The first of these represents the processes to be allocated as nodes in a graph, 

where each edge has a weight that is proportional to its inter-module communication cost 

(IMC), with the following remarks: an IMC of zero means that no communication takes 

place between those two modules and an IMC of infinity means that they should be 

assigned to the same processor. If a imnimal-cut algorithm is performed on the graph one 

ends up with the minimum allocation cost for those modules between two processors. In 

general, however, an extension of this method to an arbitrary number of processors 

requires an n-dimensional min-cut flow algorithm, which quickly becomes 

computationally intractable. 

The mathematical programming approach uses, in most cases, the non-linear 

integer programming technique, where the above problem is formulated as a set of 

equations. It is very flexible in the sense that additional constraints can be included in the 

model very easily, however it has two short-comings. First, it fails to accurately represent 

real-time constraints and precedence relations among the tasks, because both factors 

introduce queuing delays into the system in a complex manner [DSWE83]. 
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Finally, the heuristic methods, unlike the first two, try to find sub-optimal solutions 

for the assignment problem, which are in general faster, more extendible and simpler. 

1.        Some Basic Definitions 

Defining several metrics will provide a better insight into the problem 

Average Task MET - given n tasks, it is a lower-bound in the response time; 

SMET 
METAVG = 

n 

Average Load Factor - it is a kind of schedulability index that shows how tight the 

system is. The bigger it is the harder is to find a schedule. It is independent of the number 

of processors, e.g., LFAVG = 0.8 means that almost every operator is very CPU-intensive. 

A more precise insight could be obtained by the standard deviation of the load factor. 

,MET 
LFror= X 

LFAVG = 

PER 

LFTOT 

n 

Average Processor Load Factor - given the number of processors p, it specifies 

the ideal share of processing so that a perfect load balancing is achieved. 

PLFAVG = X^ 
P 

Maximum Processor Load Factor - it specifies the maximum load factor each 

processor can sustain using the minimum number of processors. 

PLF XLFTOT 
MAX    TlUFrorl 

Placement Cost Matrix - it basically shows the cost incurred when operator X is 

allocated to processor k. If some task must be placed in some specific processor, its 

placement cost should be zero. Otherwise it should be infinity. Other values reflecting the 

user's desires can also be used so that the scheduler will have more options when deciding 

upon the allocation. 
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Placement Cost Processor 1 Processor 2 Processor 3 

Operator A oo 0 4 

Operator B 0 oo 7 

Operator C 5 8 5 

Table 4.3. Placement Cost Matrix 

Inter-Module Communication Cost Matrix - it basically shows the cost incurred 

when operator X wants to communicate with operator Y, or vice-versa, using the 

network. Note that it should be symmetric, since it doesn't depend on the way the 

communication is carried out. It simply states that if those two operators are allocated in 

different processors, that will be the amount of communication they will have to exchange. 

In this case it will also account for the state streams. 

IMC Cost1 Operator A Operator B Operator C 

Operator A _ 7 13 

Operator B 7 - 8 

Operator C 13 8 - 

Table 4.4. IMC Cost Matrix 

Distance Cost Matrix - it takes into account the geographic distance between 

processors. For all distances within a local area network, index 1 is assumed. When not 

connected, the distance is assumed to be infinite. If passage through additional networks 

is required, there wül be an increase of 0.1 for each additional level of networking. Note 

that the basic purpose of this matrix is to see if the specified latencies and network delays 

are compatible with the underlying hardware architecture. 

Distance Cost Processor 1 Processor 2 Processor 3 

Processor 1 0 1 oo 

Processor 2 1 0 1.2 

Processor 3 oo 1.2 0 

Table 4.5. Distance Cost Matrix 

1 Note that we will be using interchangeably the term IMC and IPC. 
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2.        The Approach 

The first attempt was to separate tasks according to their data dependency, which 

was determined by calculating the several slices of the prototype. Informally, a slice is 

defined as the set of possible paths from a sink node (nodes with no output) to a root node 

(nodes with no input edges), i.e., a slice contains all ancestors of a sink node. For a formal 

definition see Dampier [Dam94]. Clearly, an operator can belong to more than one slice. 

Op   1  ,'.|  GA   \\  ,     ,     _   .     ..     .   . 

WP-.TVlT: 
SinkE SinkD   .'.'SinkA \SinkB SinkC 

Figure 4.14. The Data Dependency Graph 

After all slices are calculated the operators that belong to the same slices are 

grouped into equivalent classes, such as GA, GAB, GCDE etc., meaning that they belong to 

slice A, slices A and B, or slices C, D, and E, respectively. The resulting graph is the Data 

Dependency Graph, which is shown in Figure 4.14. The following algorithm can then be 

applied: 

1) Pick those operators that belong to two slices. At least one operator must exist 

in this equivalence class that has two edges, one for each of the slices it belongs 

to. Pick the least expensive edge, i.e., the one with the least IMC cost, and add 

the operator to this group. This may later prove to be something less than the 
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best choice, but for now it is the best option available without resorting to the 

expensive method of checking the entire slice. The final partition is illustrated 

by the dotted line in Figure 4.14, and presents a cost of 117 IMC units. To get 

rid of this problem, instead of trying to join in a bottom-up fashion, the most 

expensive edge not yet included in any group may be added, and an attempt can 

be made to unite both groups, resulting in the following partition: {GA, GABD , 

GAB}, {GABC , Gc}, {ODE , GD}, {GB} and {Ofe}, which has a cost of 56 IMC 

units; 

2) Keep doing this for the operators belonging to three slices, four, etc., until all 

operators have been processed. 

3) If the load factor in some set exceeds one or some specified threshold then the 

set should be split into two by recursively applying the two-dimensional 

minimal-cut algorithm, until all sets have a load factor less than one. Note that 

since the min-cut algorithm is trying to minimiye the cost of the edge, it may 

well not be an optimal choice for minimising load factor. Checking for load 

factor is left until the end because the relative costs of those edges could not be 

determined prior to completing the first two steps.. 

The intended result was to have several fairly data independent sub-graphs that 

could be assigned to different processors, having a minimum IPC cost, and, most 

importantly, providing a very nice modularization for the system with direct effects on 

reliability. For example, if some processor had a problem, only those modules allocated in 

that processor would fail. Of course, this approach did not take into account load 

balancing, but at least provided a starting point 

Unfortunately, after running a partial implementation of this algorithm with several 

random generated prototypes, its computation cost proved to be very high and most of the 

prototypes ended up having very few slices to start with. 
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After analyzing the advantages and disadvantages of the initial attempt and several 

other alternatives, it was decided to use the inter-module communication cost (IMC) as 

the main cost function, without taking into consideration any data dependency. 

Now it is necessary to come up with a consistent way of assigning the IMC cost to 

each pair of operators in a PSDL graph. 

Clearly, in the PSDL context, where complex ADTs can travel through the 

streams, the amount of data transferred by a stream is variable, and its actual size can only 

be known at run-time when the actual prototype is executing. Therefore it is necessary to 

use some kind of average or normalized value, so that the deviations are (liminished. 

Another assumption to be made (it is actually already part of the PSDL model) is that 

every operator, when fired, outputs one and only one value per firing for each of its output 

streams. Furthermore, the worst case is assumed, where, once activated, the operator will 

always produce an output, even if the data triggering conditions or the output guards are 

not satisfied. 

The IMC cost, represented as IMC_INDEX, and the actual amount of data to be 

transmitted between two operators, denoted as IMC_PER_SEC, are calculated according 

to the algorithm described in Figure 4.15. 

for each pair of operators loop 
if parent operator is TC then 

IMC_PER_SEC - coNNEcrrvrry x AVG_PROC_TIME x 1000 / PERIOD.PRODUCER; 
elsif parent is NTC then 

IMC_PER_SEC := CONNECTIVITY x AVG_PROC_TIME x 1000 / HARMONIC.BLOCK: 

end if;   
IMCJNDEX ~ IMC_PER_SEC / NORMA1JZED_IJOAD_FACTOR 

end loop; _____ — 

Figure 4.15. Algorithm for Calculating the IMC Cost Function 

Note that in order to quantify and compare IMCs it was necessary to fix the time 

window for measurement and the second was chosen. 

AVG_PROC_TIME is the estimated average time in microseconds taken for that 

system to output a typical PSDL stream to some buffer, which will be later transmitted to 
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the network. Note that this parameter is innocuous, since it is a constant for every stream. 

The only reason to maintain the parameter is to make the resulting index more realistic. 

CONNECTIVITY is defined as the number of streams connecting two operators 

including the state streams. 

The ratio 1000 ms/ PERIOD (ms) for the time-critical operator specifies the 

number of periods that occurs in one second, that is, the number of times the producer will 

fire. For the non-time-critical operator the HARMONIC BLOCK (HB) is used as if there 

was only one occurrence of the NTC operator in each HB. 

Finally,   for   the   IMCJNDEX   the   NORMALEED_LOAD_FACTOR   is 

introduced, defined as: 
(LOAD_FACTOR PARENT + LOAD.FACTOR CHILD) / MAX_LF_PER_PROC 

Note that the above formula is valid for any case except when both operators are 

NTCs.  In this case the formula is changed to: 

((1.0 - MAX_LF_PER_PROQ + (1.0 - MAX_LF_PER_PROQ) / MAX_LF_PER_PROC 

or 

(2.0/ MAX_LF_PER_PROQ - 2.0 

The rational behind these formulas is that if there are two small LF operators 

connected by a stream with some IMC_PER_SEC, the IMCJNDEX or, rather, the 

relative cost for placing them in different processors should be much higher than if they 

had big load factors, for a same IMC_PER_SEC value. For streams connecting two NTC 

operators that don't have an explicit load factor, since they don't have periods nor METs, 

the remaining load factor will be used. In other words, 1.0 - TOTAL.LF, as if it was the 

load factor. If the load factor is bigger than one, then there must be more than one 

processor, so that the maximum average load factor per processor is used instead, 

assuming that the minimum number of processors is available. 

Although it is not used in the current implementation, it seems to be a good idea to 

divide the remaining LF among all NTCs operators. This way it would be less costly to 

split two NTCs, where the total load factor of the prototype is 0.8, than to split two TC 
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operators both with load factors 0.2. In the current implementation, both cases have the 

same cost. 

3.        The Current Implementation 

As the very first step, the allocation algorithm builds a priority queue of edges in 

decreasing order of inter-module communication cost (IMCJNDEX), which were 

previously calculated Note that it will contain all edges in the prototype and not only 

those connecting time-critical operators. 

Once the priority queue exists, each operator is allowed to form a set by itself. 

Next a union-find algorithm is applied, so that if the origin and destination operators of the 

edge being examined belong to different sets, they are united (as long as their combined 

load factor is still under some threshold previously established by the user). 

begin--allocate 
- Build a priority queue of edges in decreasing order of IMC INDEX 
BUILD_PRI_QUEUE(CX)UNT); 
- Let each operator form a distinct set by itself. 
for I in l..NEW_GRAPH_PKG.ARRAY_SrZE loop 

OP := NEWJ3RAPHJ>KG.RETURN_OP(I); 
OP_UNION_FIND_PKG.CREATE(OP_LINK(I),OP); 

end loop; 
while IMC_PRIORnT_QUEUE.NON_EMPTY(PRI QUEUE) loop 

EDGE:=IMC_PRIORrrY_QUEUEJlEAD_BEST(PRI QUEUE); 
ROOT_A := OP_UNION_FIND_PKGJ=IND(OP LINK (EDGE.ORIGIN)); 
ROOT_B := OP_UNION_FIND_PKGJTND{OP_LINK (EDGE.DEST)); 
if not OPJJNION_FIND_PKG.eq (ROOT_A, ROOT_B) then 

if ROOT.AU + ROOT.B LF <, ALLOCATIONJACTOR then 
ROOT.C := OP_UNION_FIND_PKG.UNION(ROOT_A. ROOT_B, 

ALLOCATION_FACTORJ; 
end if; 

end if; 
rMC_PRIORITY_QUEUEJlEMOVE_BEST(PRI_QUEUE); 

end loop; 
end allocate; 

Figure 4.16. Partial View of the Allocation Program 

As can be seen, the current approach is a kind of first-fit bin-packing, where the 

size of the bin is dictated by the ALLOCATION FACTOR specified by the user. A very 
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simple modification which would allow a better load balancing is to substitute the 

ALLOCATION FACTOR by the AVERAGE PROCESSOR LOAD FACTOR of the 

prototype, multiplied by some number, for example, 1.1, to allow some variation around 

the average. In doing this, it is being enforced that all processors will get an even load, 

despite of an increase in the communication cost. Other checks could be applied as well, 

such as checking the requirements or the placement cost matrix to see if the operators 

could be allocated to the same processor, or if they needed to be in a specific processor. 

The slices they belong to could also be examined, so that even if the load balancing rule is 

not completely satisfied they could still be assigned to the same processor if they were in 

the same slice. As can be seen, there are an enormous number of possibilities for cost 

functions. However, finding the one that best fits the application requires a great deal of 

fine tuning. 

The union-find data structure has been implemented as an in-tree, where the nodes 

can have many children, therefore, after all the sets have been formed, we need an 0(n2) 

worst case algorithm in order to retrieve their members. Another way to implement it that 

would make the retrieve operation much cheaper is by using a double linked list, but then 

the insert operation would be a little bit more expensive. In both cases, the union-find 

algorithm could be enhanced by adding path compression and balancing into the 

implementation, resulting in an 0(mlog n) time algorithm, where m is the number of edges 

in the graph. 

Finally, the allocation algorithm outputs a set of sets, i.e., a set where each of the 

components is another set containing the nodes in that partition. Although not included in 

the current implementation, it should ultimately output a map instead of a set, where each 

of the partitions would be mapped to a specific processor, according to the requirements. 
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V. ARCHITECTURAL ISSUES OF THE CAPS SCHEDULER 

Section A of this chapter describes several issues related to the architecture of the 

CAPS scheduler in its current uniprocessor implementation. Section B presents a novel 

architecture for dealing with the distributed scheduling case. The remaining sections of 

this chapter contain a proposed implementation, first using the current available 

technology and then using the upcoming facilities offered by Ada95. It is important to 

note, however, that while implementing the distributed system in Ada provides a uniform 

environment for building prototypes, it suffers from the disadvantage that tasking and the 

new distributed systems support in Ada95 are not time-bounded. Hence, in order for the 

distributed Ada prototype to satisfy the timing constraints as specified, the average 

behavior of the underlying host operating system and the network communication sub- 

system must be relied upon. 

A.       THE CURRENT SCHEDULER - UNIPROCESSOR ARCHITECTURE 

Currently, CAPS is a development environment, implemented in the form of a 

collection of tools, that are linked together by a user interface. The prototyping process is 

accomplished by running several tools independently, one after the other, so that their 

output taken together make up the final Ada program, which will implement the 

supervisory control of the prototype. 

More specifically, the translator converts the PSDL program defined by the user 

into compilable Ada units. During this process, it creates the following five major 

packages: exceptions, instantiations, timers, streams, and drivers, all preceded by the name 

of the prototype followed by an underscore. Ultimately each of these will become pan of 

the prototype supervisory Ada program. 

The first three of these packages contain all of the user declared exceptions, 

generic packages and timer instantiations defined in the PSDL program. The package 

streams contains the instantiations of all the streams used by the prototype, which are 

implemented as Ada generic tasks contained in the generic package PSDL_STREAMS, 
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which contains all stream types supported by PSDL.   A partial view of the supervisory 

program for the Patriot Missile prototype is shown in Figure 5.1. 

package PATRIOTJEXCEPTIONS is 
— PSDL exception type declaration 
type PSDL.EXCEPTION Is (UNDECLARED_ADA_EXCEPTION); 

end PATRIOT_EXCEPTIONS; 

package PATRIOTJNSTANTIATIONS is 
— Ada Generic package instantiations 

end PATRIOTJNSTANTIATIONS; 

withPSDLJIlMERS; 
package PATRIOT_TIMERS is 

— Tuner instantiations 
endPATRIOT_T!MERS; 

— with/use clauses for atomic type packages 
— with/use clauses for generated packages. 
with PATRIOT_EXCEPTIONS; use PATRIOT.EXCEPTIONS; 
with PATRIOTJNSTANnATlONS; use PATOOTJNSTANTTATIONS; 
— with/use clauses for CAPS library packages, 
with PSDL_STREAMS; use PSDL.STREAMS; 

package PATRIOT.STREAMS is 
— Local stream instantiations 
package DS JNTERCEPT_ANGLE_CX)NTROL_PATTUOT is new 
PSDL.STREAMSJTPOJUFFERCFLOAT); 
package DS_LAUNCH_ANGLE_LAUNCH_PATRIOT is new 
PSDL_STREAMS-FffOJ*UFFER(FLOAT); 
package DS_LAUNCH_STATUS_SCUD_RADAR is new 
PSDL_SriTlEAMS^AMPLED_BUFFER(LAUNCH_STATUS_RECORD); 
package DS_LAUNCH_STATUS_DISPLAY_SCUD is new 
PSDL_STREAMS^AMPLED_BUFFER(LAUNCH_STATUS_RECORD); 
package DS_LAUNCHER_POSraON_SCUD_RADAR is new 
PSDL_STREAMS^AMPLED_BUFFER(FLOAT); 
package DS_MISSILE_TRACK_CHECK_THREAT is new 
PSDL_STREAMS.SAMPLEDJ*UFFER(TRACK); 
package DS_SCUD_STATUS_DISPLAY_SCUD is new 
PSDL_STREAMS.SAMPLED_BUFFER(MISSILE_STATUS); 
package DS_SCUD_TRACK_DISPLAY_SCUD is new 
PSDL_STREAMS^AMPLED_BUFFER(TRAC3C); 
package DS_TACnCAL_STATUS_DlSPLAY_TACTICAL is new 
PSDl^STREAMS^AMPLED_BUFFER(MISSILE_STATUS_RECORD); 

package DS_TARGET_RANGE_CX)NTROL_PATRIOT is new 
PSDL_STREAMSi:iFO_BUFFER(FLOAT); 
— State stream instantiations 

end PATRIOT.STREAMS; 

Figure 5.1. Partial View of PatrioLa 
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CuiTently, CAPS implementation supports only the sampled streams where data 

can always be written and read, the state streams, which are basically a sampled stream 

with an initial value, and the data flow streams, which are implemented as a FIFO buffer 

with size one. The streams are implemented as individual Ada tasks with entries such as 

READ, WRITE and CHECK, whose implementation will vary according to the type of 

stream. 

Finally, the package drivers basically contains all of the data declarations, the data 

trigger checks that control whether a stream should or should not be read, the execution 

trigger checks that decide whether or not to fire the operator, and the output guard 

checks, which will allow whether or not an output is to be written to the output streams. 

Each of these checks are implemented in the following way: 

1.        Data Triggers 

If an operator has no triggering condition at all, its input streams will be read 

whenever the operator is fired, but they will never generate any overflow or underflow 

exceptions. Similar situation happens when the streams are state streams. 

If at least one of the incoming streams is a TRIGGERED BY SOME sampled 

stream, then the streams will be read whenever one or more of the streams in the 

TRIGGERED BY SOME set has new data, but again, they will never generate an 

underflow exception. Because of this, care must be taken with respect to the very first 

reading of data from sampled streams, since garbage may be consumed. 

105 



OPERATOR trijamd.by.icm 
SPECIFICATION 
END 

IMPLEMENTATION GRAPH 
DATASTREAM 

■anaciflaat, 
mtttjd: INTEGER 

CONTROL CONSTRAINTS 
OPERATOR Upittejnck TRIGGERED BY SOME 

OPERATOR Ra<kr 
OPERATOR 
OPERATOR 

END 

■«CMtot UPDATB_TRACKJ)RIVBR It 
LVJUTTTUDE: FLOAT; 
LVJIANGB: FLOAT; 
LV.TARGETJD: INTEGER; 
BXCTPTION.HAS.OCCURRBD: BOOLEAN m FALSE; 
EXCEPTION.!!): PSDLJBXCBPnON; 

hagta 
- Data aigger cfaedo. 

if sot (DS_ALTTrUDE_UPDATE.TRACKNEWJ)ATA <* <te DS_RAN<ffl.UPDATB.TRACXNBWJ)ATA) H 

DS^LTITUI»JJPDATBjrRACK3in*«RJ»EADaVJU.TrrUDB); 

«ken BUFFER_UNDERFLOW K> 

DSJ»BU03UFPBR_UNDERFU>Wr ALTrrUDE_UPDATE_TRACK-. -UPDATB_TRACKT; 

aattai 

DSJlANOE_UPDATB_TRACKBUFFHRJ(EArXLVJlANOB); 

«* 
*aaBUFFER_UNDERFLOW«> 

DS JMBU03UFPER_UNDERPLOWOlANOE_UPDATE_TRACr. ■UPDATB_TRACD; 

DSJTAR<arr.lD.UPDATB.TRACXJUFPERJ»EADaV.TAROBT.ID); 

«*•■ BUFFBRJUNDERFLOW K> 

DSJ)BBlX33UPFER.UM3ERPLC«rrARCOTJD.UroATE.TRACK-.TTOATC.TRACin: 

«■■lilwii check. 

«••'UPDATE.TRAaUXJVBR; 

Figure 5.2. TRIGGERED BY SOME Implementation 

If at least one of the incoming streams is a data flow stream, in other words, has a 

TRIGGERED BY ALL condition, the streams will only be read if the data flow stream 

has a new value in its buffer, and any attempt to read an old value from a data flow 

stream, wül generate an underflow exception. As shown in Figures 5.2 and 5.3, the read 

operation is actually a call to rendezvous with the READ entry of the incoming stream 
task. 
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OPERATOR trinmdjyjD 
SPECIFICATION 
END 

IMPLEMENTATION GKAPH 
DATA STREAM 

Almn: Bodbin, 
i: INTEGER, 

t: FLOAT 
CONTROL CONSTRAINTS 

OPERATOR Oveq_Caim>l   TRIGGERED BY ALL 

OPERATOR ToqiJUnm 
OPERATOR T«q>_Seo>or 
OPERATOR Input_Keyp»d 

END 

pracadui* OVEN_CONTROL_DRJVER U 
LV_ALARM: BOOLEAN; 
LV.COMMAND: INTEGER; 
LV.TEMPBRATURB: FLOAT; 
BXCBPTK)NJUS_OCCURRED: BOOLEAN:» FALSE; 
EXCEPTIONJftPSDUXCEFTION; 

— Data trigger dBcks. 
r aot (DS_TEMPERATURB_OVEN_C0NTROLNEWJ>ATA ud UMB 

DSJkLARM_OVEN.CONTR0LNBWJ)ATA) üxa 

•adK 

tafill 
DSJUJUtM_OVEN.CONTROUBUFPERJtEAD(LV_ALARM)-. 

whtB BUFFER_UNDERFLOW s> 
DS J)BBUOJUPPER_UNDBRFLOW(-ALARM.OVBN_CONTROLa. "OVEN.CONTRCl.-); 

DS_a>MMAND_OVEN_CONTROL3UFPERJ(EAD(LV_COMMAND); 

wk«a BUFPER.UNDERFLOW » 
DSJ)GBUaJUFPER_UNDERFLOWrCOMMAND_OVEN_CONTROL', 

■OVEN_CONTROL-); 

DS_TEMPERATURE_OVEN_C»rrROL3UFreRJlEADaV.TEMPERATURE); 

w*m BUFFER_UNDERFLOW «> 
DSJ)EBUaBin,FER.UNDERFLOW('rEMPaRATURE_OVBN CONTROL". 

•OVHN.CONTR0L-): 

- Eraprioe Cawiaäa Pwlirift». 
-OdKreona 

-PSDLI 
•d OVEN.CONTROL JJRIVER: 

Figure 5.3. TRIGGERED BY ALL Implementation 

2.        Execution Triggers 

The execution trigger is where the actual program that implements the 

functionality of that operator, which is provided by the user, will be called if the conditions 

are satisfied. These conditions come from the TRIGGERING IF pan of the PSDL 

program. Note that even if they are not satisfied, the data has already been consumed, and 

is therefore marked as old data. 
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OPERATOR mjjmdjf 
■TECmCATION 
BND 

MTLSfENTATION GRAPH 
DATAITREAM 

  i-wmw 
-1—-»"" 

COnXH. CONCTRAINTl 
anRAT0RO*ai_Cmd  TRIGGERED BY il 

OFKRATOR TvpJUfln 
OPERATOR T^ locr 
OPERATOR tjaJUtp* 

END 

■ TRUB 

V ((LVjrQOBLATUXB:-100.0) m <LV>UUtM-m»)) | 

OVBN.CGNTRGUALAKM ■» LVJtLAUI. 
CGHUAND^LV COMMAND, 
TBOBRATUXB->LV.TBOBIA'naE); 

n J»UO.UNDBCLAKBDJUJU!PI UNTOVBN_OONT«OCT, 
rempi «JH_HA»_OCCURKBP • OK 
HUW1XJNJD * UNDBOARBDJtDA.BXCHP'nDN; 

Figure 5.4. TRIGGERING IF Implementation 

3.        Output Guards 

Finally, the output guards are checked.    If the conditions are satisfied, a 

rendezvous with the output stream tasks is requested by calling their WRITE entry. 

OrOIATOtt 
mnncATON 

■ffLBMBNTATKMORAni 
DATAITREAM 

AkB: KXXBAN. 
V^m: FLOAT. 
•^Mnd: VI lUUUK. 
^na  FLOAT 

C0NT1OL CCfOTKAlKn 
OPBIATOR H«_Bhmaa 
crnATot *u jLwrr* 
OPERATOR Os.Cnl 

■■<— Im 
OUTFUTVaMn FOB 

TUOOBtBDIYAU. 

OPERATOR Ta 

■•tfBccxrnaNjtu.ocajusDta 
V 0.V.COMMAND- I) M 

M.WXTAOB_HBATJ»ÄO»ITJUrFSlW»jrB(LV_VOLTAaF4. 

■■■ MJPPBR.OVEIPLOW 9 
Di _DB>UO RUPlTR_OVBtPLOW(-vatTAaB_HBAT.ELEMENT. TyVBN.CONTROO. 

Figure 5.5. Output Guards Implementation 
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Besides these packages that are generated by the Translator, there are another two 

packages generated by the Static Scheduler and by the Dynamic Scheduler. When 

consolidated by one of the CAPS scripts, they will form the so called prototype 

supervisory program, receiving the name of the prototype followed by a ".a" extension, 

which stands for an Ada program. 

Exception Declarations 
Generic Instantiations 
Timer Instantiations 
Data Stream Instantiations 
Operator Drivers 

CAPS 
Support Packages 

while true loop 
call non-time-critical operator drivers; 

end loop; 

while true loop 
call time-critical operator drivers; 

end loop; 

Dynamic Schedule 
Task Package 

Static Schedule 
Task Package 

procedure prototype_name is 
begin 

init_hardware_model; 
start static schedule; 
start dynamic schedule; 

end prototype jiame ; 

Main Program 

Figure 5.6. CAPS Supervisory Program Structure 

CAPS is composed of four major Ada tasks with the following priorities, as 

defined in the package PRIORITY.DEnNrnONS: 

1) Debugger Task - it handles all CAPS debugging tools used during prototype 

execution, and has the highest priority within CAPS, which is 4 

2) Stream Tasks - each stream is implemented as one Ada task with priority 3 
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3) Static Scheduler Task - it is responsible for calling all the timing critical 

operators, according to the static schedule. The TC operators will be called in 

a non-preemptive way, so that each instance of an operator will execute to 

completion; being preempted only by the debugger task, or during operations 

with the stream tasks. It has a priority of 2. Note that, although the stream 

tasks have higher priority, they are called (synchronized) by this task, so that 

there will be no problems such as another stream from another operator trying 

to gain control of the CPU. 

4) Dynamic Scheduler Task - it is assigned the lowest priority (priority 1) within 

CAPS, and it handles all the non-time critical operators of the prototype. They 

wfll run in a pre-defined order established by the dynamic schedule, whenever 

there is idle time in the static schedule. The NTC operators, due to their low 

priority, can be preempted by any other task and, as a matter of fact, they are 

not even guaranteed to run at all. This problem of unbounded blocking will be 

addressed later on. 

B.       THE PROPOSED DISTRIBUTED ARCHITECTURE 

In the uniprocessor case, the translator had no information about the output of the 

scheduler. For the distributed case, however, this information is crucial, since it will have 

to generate different Ada units for each of the processors involved in the prototyping. 

Once the scheduler has generated the different partitions, defining which operator 

belongs to which partition, the translator will have to be called, so that it can generate as 

many supervisory files as the number of partitions. It is suggested that the prototype name 

followed by the partition number be used as the naming convention for the supervisory 

files, eg. PATRIOT.l.a, PATRIOT_2.a. and so on. 

The following information should be passed by the scheduler to the translator, so 

that it can perform its job: 

1) Number of partitions and a list with the operator names belonging to each 

partition 
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2) Mapping from partitions to processors according to the requirements 

For the sake of simplicity, it is assumed that there is a homogenous cluster of 

processors, so that a configuration of partitions is not needed. The process of mapping 

the partitions of a program to the nodes in a distributed system is called configuring the 

partitions. Note, however, that even after having abolished condition 2, there is still a 

need to provide the translator with the name of the processors. It is suggested that this 

information come from the CAPS interface. 

Once this information is available to the translator, it should generate a supervisory 

file for each partition, exactly as it did for the uniprocessor case, except for the following 

differences: 

1) In the new package streams, where the streams are instantiated, if a specific 

stream is going to some operator external to that partition, and only in that 

case, it should be hard-coded as an instantiation of a special and newly created 

kind of stream, i.e., the network stream. Note that this stream has only one 

entry, which is writeexternal, considering that all reads will be to local 

streams. Certainly, the package PSDL_STREAMS will have to be totally 

changed to conform with the new model for distributed scheduling without 

synchronization, which requires a buffer size of three for the network streams. 

Another modification made in this package relates to the sampled streams, 

which are now divided into two groups, non-triggering (NT) and TRIGGERED 

BY SOME (TBS), since they have quite different semantic behaviors. Figure 

5.7 shows the specification of the new package containing the stream tasks. 
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with PRIORITY DEFINITIONS; 
use PRIORITY_DEFINITIONS; 
packagePSDL.STREAMS is 

BUFFER_OVERFLOW: exception; 
BUFFER_UNDERFLOW: exception; 

-Impleinents a buffer with size 1, for sampled 
- streams with no triggering condition (NT) 
generic 
type ELEMENT_TYPE is private; 
package NT_SAMPLED_BUFFER is 

task BUFFER is 
pragma PRIORrTY(BUFFER PRIORITY); 
entry READ(VALUE: out ELEMENT TYPE); 
entry WRITE(VALUE: in ELEMENTJTYPE); 

end BUFFER; 
end NT_SAMPLED_BUFFER; 

-Implements a buffer with size 3, for sampled 
- streams that have triggering "BY SOME" 
- condition (TBS) 
generic 
type ELEMENT.TYPE is private; 
package TBS_SAMPLED_BUFFER is 

task BUFFER is 
pragma PRIORnY(BUFFER_PRIORITY); 
entry CHECK(NEW_DATA: out BOOLEAN); 
entry READ(VALUE: out ELEMENT TYPE); 
entry WRITE(VALUE: in ELEMENTJTYPE); 

end BUFFER; 
function NEW.DATA return BOOLEAN; 

end TBSJSAMPLED.BUFFER; 

- Implemenli a buffer with size 1, for state streams 
- that have no triggering condition (NT) 
generic 
type ELEMENTJTYPE Is private; 
INITIALJVALUE: ELEMENTJTYPE; 
package NT.STATE_BUFFERis 

taskBUFFERIs 
pragma PRIORITY(BUFFER_PRIORrTY); 
entry READ(VALUE: out ELEMENT TYPE); 
entry WRITE(VALUE: inELEMENTJTYPE); 

end BUFFER; 
end NTJSTATE.BUFFER; 

- Implements a buffer with size 3, for states streams 
- that have triggering "BY SOME" condition (TBS) 
generic 
type ELEMENT TYPE is private; 
INrriALJVALUE: ELEMENTJTYPE; 
package TBSJSTATE.BUFFERis 

taskBUFFERIs 
pragma PRIORrrY(BUFFER_PRIORrrY); 
entry CHECK(NEW_DATA: out BOOLEAN); 
entry READ(VALUE: out ELEMENT TYPE); 
entry WRrTE(VALUE: inELEMENTJTYPE); 

end BUFFER; 
function NEW.DATAreturn BOOLEAN; 

end TBS_STATE_BUFFER; 

- Implements a buffer with size 3, for dataflow 
- streams, that is, those mat have the triggering 
-"BYALL'condiüon 
generic 
type ELEMENTjrYPE is private; 
package FIFOJBUFFER is 

taskBUFFERIs 
pragma PRIORrrY(BUFFER_PRIORrrY); 
entry CHECK(NEW_DATA: out BOOLEAN) 
entry WRITE(VALUE: in ELEMENTJTYPE) 
entry READ(VALUE: out ELEMENTJTYPE); 

end BUFFER; 
function NEW.DATA return BOOLEAN; 

end FIFO.BUFFER; 

- Implements a buffer with size 1, for networked 
- stream, no matter what land of streams they are 
with AJSTRINGS; use AJSTRINGS; 
with ADA STREAMS; 
wtthSYSTEM.RPC; 
generic 
type ELEMENTJTYPE Is private; 
PROC: SYSTEM.RPCPARTmON H>. 
STREAM_NAME: in AJSTRING; 
package NETWORKJBUFFER is 

task BUFFER is 
pragma PRIORnY(BUFFER_PRIORrrY); 
entry WRrTE_EXTERNAL( 

VALUE: in ELEMENT TYPE; 
PROC:inSYSTEM_RPCPARTmON ID; 
STREAM.NAME: in AJSTRING); 

end BUFFER; 
end NETWORK.BUFFER; 

end PSDLJSTREAMS; 

Figure 5.7. The New PSDL_Streams Ada Package Specification 

2) The new drivers package should contain only the driver procedures related to 

the operators belonging to that partition. It is very important to notice that the 

distributed  scheduling  model  assumes  that  a  stream  resides,   i.e.,  it  is 

112 



instantiated, in the same processor or partition of its consumer operator. 

Therefore, for the consumer operator, it is irrelevant where the data came from, 

and, furthermore, no changes will be needed for the individual driver 

procedures within this package, since all the reads will be to local streams. The 

only change would occur if it was necessary to perform a write to an external 

operator. In this case, the write operation should be hard-coded by the 

translator as a call to writejexternal, an entry of the special network stream 

task. In Figure 5.8, which presents the network stream task body, it is apparent 

that, after this rendezvous is accepted, there should be a call to some inter- 

processor communication routine, e.g., DO_APC, that would deliver the 

message. It is also at this point where most of the problems are going to 

appear, as shall be seen. 

with A.STRTNGS; use A_STRINGS 
with ADA_STREAMS; 
with SYSTEM_RPC; 
package body NETWORK_BUEFER is 

task body BUFFER is 
PARAMETERS : SYSTEM_RPC.PARAMS_STREAM_TYPE(3); 
— This type allows multiple stream elements within the 
— same stream, depending on its declaration 

begin 
loop 

accept WRITE_EXTERNAL(VALUE: in ELEMENT.TYPE; 
PROCESSOR: in SYSTEM_RPCPARTmON_ID; 

STREAM.NAME: in A.STRING) do 
SYSTEM_RPCJX)_APC(PROCESSOR»PARAMETERS); 
- parameters will include the remote procedure name, 
— the psdl_stream_name and value 

end WRrrE.EXTERNAL; 
end loop; 

end BUFFER; 
end NETWORK.BUFFER; 

Figure 5.8. Body of the Network Stream Task 

1 This assumption will require that all exceptions from external streams should be treated and 
consequently hard-coded in the consumer's side. 
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The changes made so far are very minor, since most of the burden is being put on 

the write operation to external streams. In fact, the most difficult part of this 

implementation is finding a way to receive the incoming messages from the different 

processors and operators. Some kind of communications server, that will have the duty of 

receiving and routing all the incoming messages to its final destination, will be needed. 

Due to the semantics of PSDL, in order to reliably implement this communication, it will 

be necessary to send some kind of header containing the consumer operator, the name of 

the stream and the name of the destination processor along with the data. 

These requirements for the header come from situations such as when the same 

operator is trying to write to the same stream into different operators in different 

partitions. This case is illustrated in Figure 5.9. In the next section the different options 

available for implementing this communication sub-system are described. 

DIFFERENT 
PARTmONS 

Figure 5.9. Justification for the Header Information 

C.       IMPLEMENTATION ISSUES OF THE COMMUNICATION SUBSYSTEM 

One of the most important design issues is the choice of the communication 

subsystem. It is recommended to use the remote procedure call (RPC) paradigm as 

opposed to the traditional message passing mechanism. The reasons for this choice is that 

RPC is widely implemented for interprocess communication between computers across a 

network, being supported by most of the emerging distributed operating systems. Several 
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Standards have been initiated by organizations, such as ISO and OSF. This method also 

provides an asynchronous form, relaxing the original synchronous semantics of RPC. 

Finally, the Annex E (Distributed Systems) of the Ada95 Reference Manual makes it the 

choice, though not mandatory, for future implementations of this Annex. [Ada95] 

1.        The RPC Model 

The remote procedure call model is similar to the local procedure call model. In 

the local case, the caller places arguments to a procedure in some well-specified location. 

It then transfers control to the procedure, and eventually gains back control. At that 

point, the results of the procedure are extracted from the well-specified location and the 

caller continues execution.[Sun90] 

The remote procedure call is similar. That is, the caller process sends a call 

message to the server process and waits (blocks) for a reply message. The call message 

contains the procedure's parameters, among other things. The reply message contains the 

procedure's results, among other things. Once the reply message is received, the results of 

the procedure are extracted, and the caller's execution is resumed. [Sun90] 

Note that in this model, only one of the two processes is active at any given time. 

The RPC protocol, however, makes no restriction if the implementation allows the calling 

routine to do some useful work while waiting for the reply (asynchronous mode). 

2.        The First Approach 

The first idea was to implement the RPC paradigm by using the standard RPC 

libraries. However, in order to do that within CAPS, it would be necessary to call from 

inside an Ada task, more specifically from inside the network tasks, a C routine that would 

implement the RPC calls (see Figure 5.8). The reason for a C routine is that there is no 

library support or existing bindings for implementing RPC from inside Ada83. It would 

not be difficult to write an Ada wrapper to the C routine. However, the biggest problem 

to be dealt with is how to pass the Ada parameters to the C routine, which could be very 

complicated abstract data types from the PSDL prototype.   Assuming that this problem 
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could somehow be solved, there is an additional problem: How could this C routine pass 

the complex ADTs through the streams? In the Unix/C world, there currently exists a 

great deal of support for these kinds of operations. 

For example, the rcpgen utility is basically a compiler that accepts a remote 

program interface definition written in the RPC language, which is very similar to C, and 

outputs a C program, containing all the client routines, the server routine, and most 

importantly, all the XDR filter routines. An XDR routine converts procedure arguments 

and results in the network format (sequential streams) and vice-versa. 

The External Data Representation (XDR) standard comprises a set of library 

routines that allow a C programmer to describe arbitrary data structures in a machine- 

independent fashion. XDR is the backbone of Sun's RPC package, in the sense that data 

for remote procedure calls is transmitted using this standard. It was designed to work 

across different languages, operating systems, and machine architectures. 

It is important to note, however, that most of the time required to prepare a data 

structure for transfer is not spent in conversion but in traversing the elements of the data 

structure. To transmit a tree, for example, each leaf must be visited and each element in a 

leaf record must be copied to a buffer and aligned there. Storage for the leaf may have to 

be deallocated after the data is sent Similarly, to receive a tree, storage must be allocated 

for each leaf, data must be moved from the buffer to the leaf and properly aligned, and 

pointers must be constructed to link the leaves together. [Sun90] 

In this case what is needed is a remote procedure called receive, running in all the 

machines, ready to intercept any incoming messages, and another routine, namely send, 

that wül also run in all machines and will remotely call the receive routine. In Figure 5.10 

both routines which were successfully tested in the "C" environment are presented. Note 

that the send routine is not sending anything, but merely passing parameters to the remote 

procedure receive. 
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RPC_REC.C 
/* receivers - remote procedures; called by server 
stub. */ 

«include <stdio.h> 
/* standard RPC include file */ 
«include <rpc/rpc.h> 
I* this file is generated by rpcgen */ 
«include "RPC_receive.h" 

I* Receive a string of chars and reply with a status 
*/ 

char** 
receive_l(message) 

char ** message; 
{ 

static charstatus[20] = "OK"; 
static charptrflOO]; 
static char *ptrl; 

printf("Received message = %s\n", ""message); 
fflush(stdout); 
ptrl = &status[0]; 
strcpy (ptr,*message); 
ptrl = &ptr[0]; •/ 
retum(&ptrl); 

} 

RPC_SEND.C 
r RPC_sendx - client program for remote receive 
service.*/ 

«include <string.h> 
«include <stdio.h> 
/* standard RPC include file */ 
«include <rpc/rpc.h> 
/* this file is generated by rpcgen */ 
«include "RPCreceivch" 

main(argc, argv) 
int arge; 
char *argvQ; 

{ 
CLIENT     *cl;    /* RPC handle */ 
char   *receiver_name; 
char   **status; 
char   "message; 

if(argc!=3){ 
fprintf(stderr, "usage: %s hostname 

message\n", argv[0]); 
exit(l); 

} 
receiverjiame = argv[l]; 
message = argv[2]; 
/* Create the client "handle" */ 
if ((cl = clnt_create(receiver_name, 

DISTR_SCHEDULE, CAPS95, "udp")) 
= NULL){ 

I* Can't establish connection with receiver */ 
clnt_pcreateerror(receiver_name); 
exit(2); 

} 

I* call the remote procedure "receive_l" */ 
printf("Message to be transmited = %s\n", 

message); 
fflush(stdout); 
if ((status = receive_l(&message, cl)) = 

NULL){ 
clnt_perror(cl, receiver_name); 
cxit(3); 

} 
printf("Status from remote receiver %s is 

%s\n", receiver_name,*status); 
clnt_destroy(cl);    /* done with the handle */ 
exit(0); 

Figure 5.10. The RPC Programs for the New Scheduler 

Finally, if both problems have been solved, i.e., the parameter passing between C 

and Ada in the sender side and the Ada bindings for the XDR routines, there is still an 

117 



additional problem in the receiver side due to the way RPC is now implemented in C. The 

receiving, or the server, routine, is implemented as a forever loop by calling the Unix 

system call svc_run(). To overcome this problem one would need to be able to call an 

Ada procedure from inside a C routine, and again the same problem of passing parameters 

would be present. 

Another approach, such as using files to exchange data between C and Ada, could 

be used, but then other problems, such as file locking, and internal synchronization 

between C and Ada tasking (so that no data could be overwritten before being consumed) 

would come into play. 

Because of all these problems, it seems that a better solution is needed, and just 

such a solution is present in the Ada95 implementation, which will be described next 

3.        The Ada95 Approach 

Annex E defines facilities for supporting the implementation of distributed systems 

using multiple partitions working cooperatively as part of a single Ada program. These 

facilities include pragmas for categorizing library units according to the role they play in 

the distributed system, such as Shared_Passive, RemoteJTypes and 

Remote_Call_Interface, and other mechanisms for supporting communication and access 

to shared data. [Ada95] 

The Partition Communication Subsystem (PCS), as defined in Annex E, provides 

facilities for supporting communication between the active partitions of a distributed 

program by using the remote procedure call interface (RPC). The annex also proposes a 

specification for the RPC interface between active partitions within the PCS, which will be 

contained in the package System.RPC. Figure 5.11 introduces the proposed specification 

for the package System.RPC 
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with Ada.Streams; 
package System.RPC is 

type Partition_ID is range 0.. implementation-defined 
Communication_Error: exception; 
type Params_Stream_Type (Initial_size: Ada.Streams.Stream_Element_Count) is new 

Ada.Streams.Root_Stream_Type with private; 

procedure Read(Stream: in out Params_Stream_Type; 
Item: out Ada.Streams.Stream_Element_Anay; 
Last: out Ada.Streams.Stream_Elcment_Offset); 

procedure Write(Stream: in out Params_Stream_Type; 
Item: in Ada.Streams.Stream_Element_Anay); 

— Synchronous call 
procedure Do_RPC(Partition: in PartitionJD; 

Params: access Params_Stream_Type 
Result: access Params_Stream_Type); 

— Asynchronous call 
procedure Do_APC(Partition: in PartitionJD; 

Params: access Params_Stream_Type); 

— The handler for incoming RPCs 
type RPC_Receiver is acess procedure(Params: access Params_Stream_Type 

Result: access Params_Stream_Type); 
procedure Establish RPC_Receiver(Receiver: in RPC_Receiver); 

private 
— not specified by the language 

end SystemJyC; 

Figure 5.11. Package SystemRPC (Specification) 

As noted in Figure 5.11, during the execution of a remote subprogram call, most 

of the parameters (and later results, if any) are passed using a stream oriented 

representation which is suitable for transmission between partitions. The annex calls this 

action marshalling. Unmarshalling is the reverse action of reconstructing the parameters 

or results from the stream-oriented representation. Note that there is not any defined 

standard for transformation, but nevertheless the XDR standard seems to be the choice for 

most of the Ada compiler vendors. 

119 



The type Partition_ID is used to identify a partition, and Params_Stream_Type is 

used for identifying the particular remote subprogram that is being called, as well as 

marshalling and unmarshalling the parameters or result of a remote subprogram call, as 

part of sending them between partitions. The Read and Write procedures override the 

corresponding abstract operations for the type Params_Stream_Type. 

Both synchronous and asynchronous communication are supported, and are 

implemented by the procedures Do_RPC and Do_APC, respectively. Both procedures 

send a message to the active partition identified by the Partition parameter. The first one 

blocks the calling task until a reply message comes from the called partition, or some error 

is detected by the PCS, in which case Communication_Error is raised at the point of the 

call to Do_RPC. Do_APC operates in the same way as Do_RPC, except that it is allowed 

to return immediately after sending the message. 

Finally, the procedure Establish_RPC_Receiver is called only once, immediately 

after elaborating the library units of an active partition, but prior to invoking the main 

subprogram, if any. The Receiver parameter designates an implementation-provided 

procedure called the RPC_Receiver which will handle all RPCs received by the partition. 

Establish_RPC_Receiver saves a reference to the RPC-receiver. When a message is 

received at the called partition, the RPC-receiver is called with the Params stream 

containing the message. When the RPC-receiver returns, the contents of the stream 

designated by Result is placed in a message and sent back to the calling partition. 

The implementation of the RPC-receiver shall be reentrant, thereby allowing 

concurrent calls on it from the PCS to service concurrent remote subprogram calls into the 

partition. 

a.        The Package Streams 

A Stream is a sequence of elements comprising values from possibly 

different types, and allowing sequential access to these values. A stream type is a type in 

the class whose root type is Streams. Root_Stream_Type. [Ada95] 
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The types in this class represent different kinds of streams. The pre-defined 

stream-oriented attributes like TRead and TWrite make dispatching calls on the Read and 

Write procedures of the Root_Stream_Type. 

package Ada.Streams is 
pragma Pure(Streams); 
type Root_Stream_Type is abstract tagged limited private; 
type StreamJElement is mod implementation-defined; 
type Stream_Element_Offset is range implementation-defined; 
subtype Stream_Element_Count is 

Stream_Element_Offset range 0.. Stream_Element_Offset'Last; 
type Stream_Element_Anay is 

array(Stream_Element_Offset range o) of Stream_Element; 

procedure Read(Stream: in out Root_Stream_Type; 
Item: out Stream_Element_Anay; 
Last: out Stream_Element_Offset) is abstract; 

procedure Write(Stream: in out Root_Stream_Tvpe; 
Item : in Stream_Element_Array) is abstract; 

private 
- not specified by the language 

end Ada.Streams; 

Figure 5.12. Package Ada.Streams (Specification) 

Read operations transfer ItemLength stream elements from the specified 

stream to fill the array Item. The index of the last stream element transferred is returned in 

Last. Last is less than ItemLast only if the end of the stream is reached. 

The Write operation appends Item to the specified stream. There are also 

the Read, Write, Output and Input attributes that convert values to a stream of elements 

and reconstruct values from a stream. 

For every subtype S of a type T, some attributes are defined, which denote 

either a procedure or a function call. Figure 5.13 presents such attributes. 
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- writes the value of Item to Stream 
procedure S*Write(Stream: access Ada.Streams. Root_Stream_Type'Class; 

Item: T); 

- reads the value of Item from Stream 
procedure SR.ead(Stream: access AdaStreams. Root_Stream_Type'Class; 

Item: out T); 

- writes the value of Item to Stream, including any bounds or discriminants 
procedure S'Output(Stream: access Ada.Streams. Root_Stream_Type'Class; 

Item: T); 

- reads and returns the value of Item from Stream, using any bounds or 
- discriminants written by a corresponding S'Output 
function S1nput(Stream : access Ada.Streams. Root_Stream_Type'Class; 

return T); 

Figure 5.13. Stream Attributes 

b. Conclusions 

All of the problems that have been discussed in this section have been 

addressed in the Ada95 implementation. Therefore, in order to implement the distributed 

scheduling model, it is only necessary to follow the directions introduced in Section B. It 

is now apparent that the example given in Figure 5.8 had already considered the packages 

(System_RPC and Ada.Streams) and procedures (DO_APC) to be introduced with 

Ada95. The only part that is not yet clear, because it is dependent upon implementation, 

is the marshalling and unmarshaling operations, which will affect the manner in which the 

Ada stream is constructed from the parameters passed during the rendezvous with the 

write_external entry of the network stream task. 

Figure 5.14 presents a pictorial view of the proposed architecture for the 

new Distributed CAPS Scheduler. 
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Figure 5.14. Architecture for the Distributed CAPS Scheduler 
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D.       CPU   SPEED   RATIO   ISSUES   IN   A   PROTOTYPING 
ENVIRONMENT 

In a software prototyping environment, where the host machines usually used for 

prototyping are not similar to the intended target machines (which may not even be known 

a priori), special attention must be taken so that erroneous conclusions due to timing 

problems during the prototyping are avoided. 

There are two kinds of timing errors that can be foreseen in a real-time system. 

Both of them may cause undesirable system behavior, such as deadlocks, buffer overflows, 

or data inconsistency. The first kind of error has a relative nature, since it is caused by 

computational events that occur in an improper sequence. They are solely dependent on 

the relative order in which the computations occur, and can be avoided by proper 

scheduling of the system [Mok83]. 

The second kind of error is more subtle, in the sense that it is caused by violation 

of some specified timing constraints, such as missing deadlines. In CAPS, since a static 

schedule is used to execute the prototype, this problem can only happen if the MET was 

inaccurately specified, or if the MET was specified for running in a faster machine. What, 

then, is the real meaning of the MET? Is it an absolute value, or is it dependent upon the 

machine in which the module is running? Clearly, this is only the tip of an iceberg, and the 

answer is no, it cannot be absolute, since the attribute execution time.is a function of the 

machine throughput. A module that has an MET of 150 ms for some specific machine 

may take longer than that to execute if running in a slower machine. 

The problem is even bigger if the CAPS Software Base, which is supposed to be a 

collection of reusable components provided by different vendors, is taken into account. 

Each component should have a PSDL specification, with all the timing constraints, such as 

MET, MRT, MCP, etc. All of this information will be used during the execution phase of 

the prototype, in trying to match needs with the available components. The same problem 

arises regarding their timing reference, since each vendor may well have their own. 
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This discussion demonstrates the imperative need for assuming a common timing 

reference within CAPS. It can be anything, as long as it is consistent and used throughout 

the prototype. Care must be taken when choosing this reference, however, since it may 

lead to significant differences when dealing with reusable components from different 

sources. 

1.        Choosing a Reference 

Standard measures of performance provide a basis for comparison, and time is the 

best way to measure computer performance. The computer that performs the same 

amount of work in the least time is the fastest A number of popular measures have been 

adopted in the quest for a standard measure of computer performance, but most of them 

were forced into a service for which they were never intended. [HP90] 

The MIPS, million instructions per second, is easily understood by a customer, in 

that faster machines means bigger MIPS. However, the MIPS measure presents the 

following problems: 

1) MIPS is dependent on the instruction set, making it difficult to compare 

machines with different instruction sets 

2) MIPS varies between programs on the same computer 

3) MIPS can vary inversely to performance 

A classic example to the third of these points is the MIPS rating of a machine with 

optional floating-point hardware. If it uses the hardware floating-point unit it will take 

less time to execute, but it will also execute fewer and more complex instructions. 

Software floating-point executes more but simpler instructions, resulting in a higher MIPS 

rating [HP90]. 

Another popular alternative is million floating-point operations per second, 

abbreviated as MFLOPS. However, MFLOPS is, clearly, highly dependent on the 

machine and on the program. 
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Other options are synthetic benchmarks, such as Whetstone and Dhrystone, but the 

best choice appears to be to use real programs, such as compilers, text editors, CAD tools, 

etc., which have inputs, outputs, and other user-defined options. [HP90] 

While having a standard of performance for computers is still beyond the horizon, 

for prototyping purposes within CAPS, where many of the figures are still subject to 

change during the prototype refinement process, any of these metrics provides a good 

starting place. Again, for the sake of simplicity, the MIPS rating will be the reference 

model for performance in this work. 

2.        CAPS Timing Model 

It will be useful to define some of the terms used in construction of the model: 

CAPS Reference -Specifies the MIPS rating of a hypothetical machine, to which 

all of the CAPS timing information should be normalized. 

HOST Reference - Specifies the MIPS rating of the host machine where CAPS is 

installed. This value will be automatically generated by CAPS at the start of the session, 

and it is the result of an Unix system call. 

TARGET Reference - Specifies the MIPS rating of the target machine. In the 

absence of this value, it is assumed that the host machine for CAPS is identical to the 

target machine. This value should be provided by the user at the beginning of the design 

of the prototype, and will affect the retrieval of reusable components from the Software 

Base. 

CPU Speed Ratio - Specifies the MIPS ratio between the target and the host 

machine. It can be changed by the user to make temporary simulations and to overcome 

possible timing errors. It is important to note that this value will have a very important 

role in debugging possible timing errors during prototype execution. Its default value is 

given by the formula: 

OEITTC     je _•      Target Reference CPUSpeedRauo = „ b n f  r Host Reference 
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Table 5.1 specifies the default values which will used throughout this discussion, 

unless otherwise stated. 

Reference 
10 MIPS 

Reference 
20 MIPS 

;3stÄii 
Reference 
15 MIPS 

CPU Speed 
iPRado 

1.33 

Table 5.1. Default Values for the Timing Model 

a. Building the Prototype 

All timing information, such as MET, PER, FW, MRT, MCP, LAT and 

MOP, specified by the user during the design phase of the prototype, which in most cases 

come from the Requirements Document, are assumed to be referenced or normalized to 

the Target Reference. Therefore, when, for example, defining an operator with MET = 

100ms, it should be understood that 100ms would be the maximum execution time 

allowed for that operator if running in the target machine. It will default to the host 

machine if the Target Reference is not given. 

Note that the MET of this operator is equivalent to 200ms with respect to 

the CAPS Reference; it is this value of 200ms that will be used in the query to the 

Software Base during the search for a matching reusable component Observe also that 

this value will not affect Translation nor Scheduling, since all timing information is 

consistently and linearly normalized to the CAPS Reference. 

b. Installing Components in the Software Base 

When getting reusable components from a specific vendor or supplier, the 

timing reference used to classify their components should be specified along with the 

component For example, when a component arrives, it should be labeled as follows: 

component X has a certified MET of 100ms under a 5 MIPS machine. 

This information wül allow the insertion of the component into the 

Software Base as a component with MET equal to 50ms, which is the correct value 

normalized with respect to the CAPS Reference. Note that this value will be used during 

its retrieval from the software base by the prototypes. 
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3.        Relations between CPU Speed Ratio and Timing Errors 

Assuming that all timing information from the reusable components is correct with 

respect to the supplier's reference, then there should be no timing errors, if the component 

matches the prototype specification. For example: 

Suppose that a component with an MET of 120ms is needed. Then the correct 

query to be performed on the Software Base should be for a component with an MET of 

240ms, i.e., 

METCAPS = METTARGET X 
Target^ 

CAPSREF 

Therefore, using this component in the prototype, according to the generated static 

schedule, should not cause any timing errors. However, if it does cause a timing error, 

then it is possible to conclude that the component timing information was incorrect. To 

solve this problem, the following steps can be taken: 

a) Increase the CPU Speed Ratio until the error disappears. This means that a 

reasonable MET for that component with respect to the Target reference, although it may 

not be the tightest one, is equal to: 

XT     * ^r, New CPU Speed Ratio 
New METT^ = oldCpuSpwdRa[jo x Oigtoal METTw 

Note that another side effect in performing step a) is that the entire schedule is 

stretched, and, consequently, the slack time available for the dynamic scheduler is 

increased, since some of the timing critical operators don't need more time to execute. 

b) Update the Software Base with the correct timing information for that 

component 

c) Reset the CPU Speed Ratio to its original value and take either step d), e) or f) 

to solve the problem. 

d) If requirements permit,change the PSDL specification to allow the bigger MET 

found in step a). This in turn will require a whole new CAPS session, starting from a new 
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translation until the final compilation.   Note that increasing the MET affects the load 

factor and may cause an unfeasible schedule. 

e) Search the Software Base for another reusable component that matches the 

original MET. This new one may well have the correct information. 

f) Create another new component or optimize the existing component Validate its 

timing constraints and update the Software Base if succesfull. 

g) If it is realized that a faster target processor is needed in order to cope with the 

requirements, then the Target Reference should be changed so that those timing errors 

disappear. Note that this change will only affect the CPU Speed Ratio, and as explained 

earlier, and will not change the schedule. Theoretically, the necessary change for the 

Target Reference can be derived very easily from the following formula: 

New Target Reference = New CPU Speed Ratio x Original Host Reference 

The other source of timing errors is found when dealing with user-created 

components. In other words, the component just created takes more time than that 

specified. For example, assume the previous situation, where a component with MET of 

120ms is required. Since the host machine is slower than the target machine, the 

scheduling time will be linearly stretched by a factor of 1.33, that is, 1.33 x 120ms, or 

159.6ms, will be allowed for the execution interval of this component. If timing errors 

occur, the following steps can be taken to eliminate them: 

a) Increase the CPU Speed Ratio until the error disappears.  This means that a 

reasonable MET for that component with respect to the Target reference, although it may 

not be the tightest one, is equal to: 
New CPU Speed Ratio . 

KPW MET      = ~ r~~ x Original MET New MtiTnS     old CPU Speed Ratio ^ T",a 

b) Reset the CPU Speed Ratio for its original value and take either step c) or d) to 

solve the problem. 
c) If requirements permits, change the PSDL specification to allow the bigger 

MET found in step a). This in turn will require a whole new CAPS session, starting from 
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a new translation until the final compilation.  Again, this change may cause an unfeasible 
schedule. 

d) Rewrite the component trying to speed it up; 

e) If it is realized that a faster target processor is needed in order to cope with the 

requirements, then the Target Reference should be changed so that those timing errors 

disappear. The required change for the Target Reference can be derived from the 
following formula: 

New Target Reference = New CPU Speed Ratio x Original Host Reference 

f) After getting rid of the timing errors, if it is decided to add the user-created 

component to the software base, the component should be associated with an METCAPS 

equal to METT<irget x^^ 8     Target 
REF 

REF 

4.        How the CPU Speed Ratio affects Scheduling 

TTe Static Schedule is basically a sequence of paus of abso.ute values contauting 

the start tune and stop time for each instance of the time-critical operators within one 
harmonic block. 

At the beginning, the static scheduler task calls the function TARGET_TO_HOST, 

which belongs to the package PSDL.TIMERS, and multiplies all those absolute time' 

values by the CPU Speed Ratio. The net effect is that the scheduler will stretch or shrink 

all of the timing information related to the prototype in a linear fashion. 
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Figure 5.15. Effect of the CPU Speed Ratio on the Schedule 

5.        Handling Unwanted Interactions during Prototype Scheduling 

A software prototyping environment needs to simulate external entities so that the 

entire system being prototyped can be exercised. These external entities will in most cases 

cither generate inputs or consume outputs from the core of the system being prototyped. 

This requires that the timing constraints are taken into consideration during the generation 

of the schedule. However, it is during prototype execution that the effects are most 

harmful, since they will incorrectly steal CPU time from the host system. It is also 

unavoidable that time is spent by the host operating system to serve processes that 

sometimes nothing have to do with the prototype. 

All these unwanted interactions can dramatically affect timing behavior and overall 

confidence in the prototype. The question to ask, then, is how can these timing 

interferences be eliminated? 

To solve these problems, CAPS introduced the technique of having two different 

time lines. One is the absolute time line, and is driven by the real-time clock of the host 

machine. The second one, the simulation time, will command all the scheduling actions of 

the prototype. 
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What is going to happen is that whenever an external operator, or some operating 

system function, is being executed, the scheduling clock will be frozen, so that, for the 

prototype, it is as though they do not exist. 

Another feature that can be explored with this technique is when an operator 

belonging to the prototype exceeds its scheduling interval and causes an exception. It is 

very likely that this will interfere with other operators, causing a chain of exceptions, when 

in reality, only the very first operator incurred a timing error. Because of the use of a 

simulated clock (the scheduling clock) it is possible to remove any excess of time from the 

scheduling clock, and then resume the simulation, so that no further operators will be 

affected. 
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VI.    EXPERIMENTAL RESULTS 

A. INTRODUCTION 

Although the full implementation of the new Distributed Model is not complete, 

due to software limitations of the current Ada compiler technology that will be solved by 

the new Ada95 implementation, much can be said about expectations and also about the 

general scheduling capability of CAPS. 

One of the biggest problems encountered during this research was the lack of an 

adequate set of prototypes to test the scheduler. Up to now, most of the development in 

CAPS has been tested with a few prototypes that may be sufficient for the development of 

several tools, but not for the scheduler, which requires a huge test set so that all the 

critical points can be exercised. This is the reason for building a PSDL random graph 

generator, as discussed in the next section of this chapter. 

B. THE RANDOM GRAPH GENERATOR 

The random graph generator has the following basic features: 

1) builds PSDL prototypes with an arbitrary number of operators 

2) allows the user to specify how many different prototypes are to be generated 

3) provides an expert mode where the system attempts to reduce the harmonic 

block automatically, by changing the periods of the periodic and the 

transformed sporadic operators within an user-defined range 

4) operates in two randomization modes: unlimited or restricted randomization 

5) provides a compression capability, so that an arbitrary number of operators may 

be located within a bounded load factor of one. This is very useful for testing 

uniprocessor scheduling algorithms 

6) allows the user to specify the desired percentage of timing critical operators, 

periodic operators, and data flow edges 

7) can generate prototypes with different degrees of sparseness 

8) the user can specify the maximum number of edges between two operators 
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9) provides a thorough scheduling information for debugging puiposes 

There are basically two major procedures that build the random graph.  The first 

one is the Produce_Random_Array and the second one is the Produce_Random_Matrix. 

Both routines use the same data structure of the scheduler, so that the simulation is as 

close as possible to the real prototype. 

tjpt OPERATOR U type EDGE JNPOU 
record raovd 

THEOPERATORJ& OPERATORJD 9» A_STRINGxoyty; ORIGIN: INTEGER :»-l; 
1HEJKT: MET 9-0; DEST: INTEGER s»-l; 
TiCMRT: MRT»0-, PARENT: INTEGER :--l; 
THEJiKP: MCPs.0; CHILD: INTEGER M-l; 
THB.PBRIOD: PERIOD:-©; THIiATBNCT: LATENCY s>0-. 
TtfiJOTTMN: WnWN^O; DATAFLOW.EDGE: BOOLEAN »ike; 
ACnJAL_PERMD: PERIOD:»», OVERLAP.ABLB: BOOLEAN saw; 
LOWBRJBRIOD: PERIOD :-0-, HAS_STATE_EDGE: BOOLEAN»«»; 
UFPERJ>ER10D: PERK» a. PERIODlm; H*C_PER_SBC FLOAT r-OO; 
THE.SLKXS: NODB.LIST.liK:« all; WCJNDEX: FLOAT »00: 
LOADJPACT: FLOAT ^ 00; PRJNDBX: FLOAT ä-99ft 
FANJN: INTEGER:-!); CONNECnVTTY: INTEGER »0; 
FAN_OUT: INTEGER :-0; •adraoBrd; 

tnd racord; 

Figure 6.1. Partial View of the Data Structure Used to Build the Random Graph. 

The first procedure, Produce_Random_Array, is the one that actually randomly 

assigns the timing constraints to the random prototype. It has two modes of operation. 

The first one uses a partial randomization, in the sense that only values from a pre-defined 

set are assigned to the timing constraints. The second mode uses a full randomization, so 

that any value within a finite range previously specified can be assigned. 

It is in this procedure where most of the information provided by the user, such as 

number of prototypes to be generated, number of operators in each prototype, percentage 

of timing critical operators, mode of randomization, percentage of periodic operators, and 

compression factor are used. 

In the current implementation, the restricted randomization mode generates five 

possible different values for MET (100,300,500,700, and 1000) and four values for each 

of the remaining timing constraints PER, FW, MCP and MRT, which are dependent upon 

the previous chosen value for the MET. This was done in order to assure semantic 

compatibility with a valid PSDL prototype. 
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If one opts for unlimited randomization, then no restriction is imposed on timing 

constraints, rather than limiting their values within a reasonable range, which now stands 

between 0 and 8000 ms. 

The random number generator being used has a period of approximately 2144, so in 

order to achieve better results it is not reset after the generation of each different 

prototype. 

The expert mode is a facility that allows the user to automatically reduce the final 

harmonic block length of the prototype, substantially increasing the schedulability of the 

prototype. For more in depth information, refer to Chapter HI, Section E. 

The compression factor is used so that, if the prototype happens to have a load 

factor bigger than one (which would mean that it couldn't run in a uniprocessor system) 

then me timing constraints are going to be compressed accordingly. This feature allow us 

to test huge prototypes for uniprocessors that otherwise, due to the random nature of the 

graph, would be very hard to achieve. 

The second main procedure, Produce_Random_Matrix, is where artificial edges 

are randomly generated according to the degree of sparseness and the maximum number 

of edges defined by the user. It is also here where the latency for each edges is generated. 

C.       FIRST FINDINGS AFTER USING THE RANDOM GRAPH GENERATOR 

The first finding after using the random graph generator was that the scheduling 

capability of the existing CAPS scheduler is very poor. It is not likely that the scheduler 

will find a feasible schedule for a moderate size prototype without manual adjustment of 

all timing constraints after a long and tedious process of trial and error. But that is not 

really bad because, after all, the static scheduling problem is a well known NP-Hard 

problem. The interesting thing, however, is that even for very small prototypes, with as 

few as 4 or 5 operators, and also a very limited number of edges, it still couldn't find a 

feasible schedule, even through the use of traditional and widely accepted algorithms, such 

as earliest start time first and earliest deadline first, modified for the non-preemptive 

case. The question to be asked is, "Why does that happen, and how can we improve it?". 
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After meticulous analysis of several runs, with hundreds of random prototypes, it 

was determined that, on average, the earliest deadline first algorithm finds a feasible 

schedule for prototypes with load factors less than 0.5. It was also noticeable that the 

schedulability of the prototype was affected somehow by the harmonic block length (HB). 

There were some cases where, even with load factors over 0.95, after optimizing the HB 

to smaller values, it was possible to find a feasible schedule, which could not be achieved 

with the bigger HB. The load factor definitely has a strong influence on schedulability. 

For the harmonic block, however, it was not thought that the influence would be so great. 

There are two readily apparent explanations for the harmonic block syndrome. 

The first is because of the higher number of instances that can fit in a bigger HB, the 

probability of having two or more tasks fighting for the same time slot increases. The 

second explanation is partially supported by Theorem 6 in Chapter m, where it is evident 

that, by increasing the period of an operator, which might happen when its period is 

optimized, it also has an effect of increasing the probability of finding a feasible schedule. 

The following problems are now apparent: First, how to decrease the load factor 

of our prototype, and; second, how to decrease its associated harmonic block. 

The total load factor of the prototype cannot be changed much, since it comes 

from the user's requirements. Splitting them into multiple processors will not do much 

good in the current practice for non-preemptive static distributed scheduling, which 

requires a global schedule for the entire prototype in order to satisfy all synchronization 

requirements. 

In order to change the harmonic block, assuming that the METs cannot be 

changed, it is necessary to modify the periods, but recall that they are constrained by the 

user's requirements. However, if we take a close look at these problems it is possible to 

realize that they are quite different. 

Assume that the requirements allow for making little changes in the periods, which 

is a fair assumption, since in most of the systems it does not really matter if the period of 

some task is 1000 ms or 1010 ms. So the effect of such period change on the load factor 
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is clearly veiy small, while for the harmonic block it may represent a very big change, since 

it may get rid of some prime factor that was driving up the least common multiple (LCM) 

of the periods. Following this line of reasoning a novel technique to decrease the 

harmonic block was discovered, and will be described in the next section. 

D.       MINIMIZING THE HARMONIC BLOCK 

The need for a harmonic block comes from the fact that, unlike most of the 

problems in classical scheduling, this periodic task set contains an infinite number of 

instances. Therefore, in order to calculate a static schedule for the task set, it is necessary 

to find a time interval which can be repeated forever. When the completion time of the 

first instances are restricted to be less than or equal to the periods, it is common for the 

harmonic block to be the least common multiple (LCM) of the periods for such an 

interval. However, when those restrictions to the deadlines do not apply, it has been 

proven in Chapter HI Section C that it is sufficient to increase the time interval to twice 

the LCM. At any rate, the point to be made is that in both cases the size of the LCM is 

critical and, for the reasons explained in the previous section, it is desirable to make it as 

small as possible. 

Formally, the least common multiple of two natural numbers i and j is the smallest 

natural number that is divisible by both i and j. It is also known from Number Theory that 

every positive integer can be written uniquely as the product of primes, where the prime 

factors are powers of some positive integer. 

From the above definitions, it can clearly be seen that the LCM of two natural 

numbers i and j will have in its prime factorization all of the prime factors of the original 

numbers raised to the maximum exponent, as shown in the following example. 

Example: 

i = 120 = 23 x 3 x 5 

j = 100 = 22 x 52 

LCM (i j)        = 23 x 3 x52 = 600 
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This same approach can be extrapolated to a case where several numbers are 

present, instead of only two. So now the problem is decreasing the LCM of a set of 

periods. 

There are two basic approaches. The first one is trying to decrease the factor with 

the biggest prime, and the other is decreasing the biggest prime factor. Clearly, the second 

approach is more expedient, but still leaves the following problem. Suppose all of the 

periods which are contributing for the factors in the LCM are identified, and have been 

placed into a critical list, with some kind of mapping to the factors they are affecting. 

Now, assume that the period which is contributing for the biggest factor is changed. With 

luck, that biggest factor may be eliminated. However, the exponent of some other prime 

factor from that same period may be increased, now becoming the critical one for the 

LCM. In other words, it is necessary to re-evaluate the critical list and the corresponding 

mapping after each iteration of the optimization process, or one may end up with a non- 

optimal solution. 

After this brief description of the problem statement, it is possible to introduce the 

algorithm for optimizing the LCM, which is presented in Figure 6.2. 
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Algorithm OptimizeJXM 
For every period calculate its prime factors; 
Calculate the initial LCM for the periodic task set and its prime factors; 
Set the flag LCM is decreasing to false; 
While there exists a prime factor of the LCM not yet optimized loop 

Insert those tasks whose periods are contributing for the LCM factors into the 
Critical List in decreasing order of their contribution. In other words, the head of 
the Critical List will be the task with the biggest contribution to the LCM; 
While the Critical List is non-empty loop 

Pick the task which is in the head of the Critical List; 
Remove its contribution from the LCM; 
For each period within its allowable range loop 

Calculate the new LCM; 
If LCM is decreasing then record this period as the best one so far, 

end loop; 
If LCM is decreasing then 

Update the new LCM and the task prime factors 
end if; 
Remove this task from the Critical List; 

end loop; 
if LCM is decreasing then 

It means that come critical task in the Critical List had its period changed 
and consequently reduced the LCM. Now is the subtle part, even if we had 
some period in the Critical List that couldn't have its biggest factor 
changed, so that the LCM could decrease, it needs to be reconsidered, since 
the order in which the Critical List was scanned matters!! In other words, 
after all the others in the Critical List have been processed, it may well now 
be possible to change that same task so that the LCM will be decreased. So, 
we need to calculate the new LCM and start all over again, 

else if LCM is not decreasing 
Means that none of the critical tasks in the Critical List were able to get rid 
of their biggest factor, and so there is nothing else to do other than skip to 
the second biggest factor, and so forth, 

end if; 
Set LCM decreasing flag back to false; 

end loop; 
end Algorithm Optimize.LCM; 

Figure 6.2. Algorithm for Optimizing the LCM 

Although its optimality has not been formally proven, it is believed that this 

algorithm will always lead to near-optimal results. By applying this algorithm to some 

random task sets it was possible to tremendously reduce the harmonic block, with some 

positive effects in schedulability. It should also be noted, by the examples shown below, 
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that the periods are of critical importance. With very few changes in the periods an 

enormous decrease in the LCM can be achieved, with consequently few effects on the load 

factor. 

Example INIHAtPERIOD NEW PERIOD 

1 

100 100 
500 500 
600 600 
800 750 
1033 1000 

LCM 12396,000 3000 

2 

1500 1500 

1320 1400 
1677 1820 
500 500 
700 700 
800 875 
1000 1000 
999 1092 
2987 3250 

LCM 5.13763486E+14 273,000 

4132 TIMES 
SMALLER 

Figure 6.3. Optimization Results 

1,881,917,532 TIMES 
SMALLER 

E.       THE   NEW   DISTRIBUTED   SCHEDULING   ALGORITHM   -   SOME 
RESULTS 

After running several hundreds prototypes with typical values for the timing 

constraints (such as MET, MRT, MCP and PER) it was possible to make several 

conclusions in addition to those already cited in the previous sections. One of them, and 

actually the main driving force for directing us to distributed scheduling, was the palpable 

necessity for prototypes with load factors bigger than 1.0, specifically in our applications 

domain. 

Another major point discovered after this research is the real need for supporting 

and advising the real-time system designer, mainly with respect to the values for the timing 

constraints.  Remember that non-preemptive static scheduling is a well known NP-Hard 
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problem, so that unless P=NP, there is not much hope of finding better ways to solve this 

problem. That is why, sometimes, in prototypes with only two nodes, it was impossible to 

find a feasible schedule. 

So, what is really needed is to find better ways to live with this problem One of 

the ways to accomplish this is by providing better support in the area of schedulability 

tests, which is also a known NP-Hard problem That is why several theorems were 

presented in Chapter m, which, it is hoped, will help in finding and pin-pointing some of 

the problems in the user's design. 

It is possible by making use of those theorems to suggest changes in the timing 

constraints of a set of tasks, or even in a specific task, to suggest different partitions so 

that some tasks are kept together due to the similarities of their timing constraints, etc. 

Now the scheduler can handle prototypes with load factors bigger than one, by 

applying the allocation algorithm described in Chapter V. The user can either specify the 

maximum load factor allowed per processor, or the number of processors. It is also 

capable of generating a schedule, if one can be found, by using a distributed version of the 

Earliest Deadline First algorithm By making use of the Fundamental Synchronization 

Theorem it is now possible to divide the schedule into several smaller schedules, so that its 

complexity is tremendously decreased. 

The robustness of the new scheduler is enhanced due to the large testing that was 

made possible by the random graph generator. Several important bugs were found during 

these experiments. It was possible to analyze and compare the performance of the 

different uniprocessor scheduling algorithms currently implemented in CAPS. The output 

generated by the scheduler is now more comprehensive, improving the debugging 

capability. 

An expert mode is provided to the designer, so that the harmonic block will be 

decreased with some effects on the load factor. A possible enhancement for the expert 

mode is to combine it with the actual scheduling. In other words, instead of applying the 
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optimization algorithm to the entire task set in only one step, prior to the scheduling, an 

attempt should be made to schedule the task set after each optimization iteration. 

As can be seen, quite a lot has been accomplished towards a more dependable and 

reliable scheduler, but much more needs to be done so that CAPS can become a true 

design aid to real-time system designers. 
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VA. CONCLUSIONS AND RECOMMENDATIONS 

A.       SUMMARY OF THE DISSERTATION 

This dissertation can be roughly divided into three parts. The first part (Chapters I 

through HI) presents a review of the most important results in the area of hard real-time 

scheduling and introduces several theorems to improve the schedulability analysis of task 

sets containing both periodic and sporadic tasks. The effects of precedence relationships 

among the tasks on these theorems is also analyzed. Although most of the work was done 

for the non-preemptive model, several results are also applicable to the preemptive case, 

as highlighted throughout the dissertation.  The second part of the dissertation (Chapter 

IV) introduces the novel method of hard real-time distributed scheduling without explicit 

synchronization. The motivation for this new approach is the complexity of the hard real- 

time scheduling problem, where for even small size systems running in a uni-processor 

environment, it is extremely hard to find a feasible schedule.  With the addition of one 

more variable, such as distributed processing, the general scheduling problem becomes 

intractable, and unless P=NP, there is no reason to foresee any solution to this problem It 

was therefore decided to sacrifice timing constraints in order to decrease the complexity of 

the scheduling problem Depending on the application, this approach may not be 

applicable. However, this approach should work in most cases, especially in prototyping, 

which is usually in the early stages of the life cycle of the system, allowing for the fine 

tuning of timing requirements.    The third part of the dissertation deals with the 

architectural aspects of implementation of a distributed real-time scheduler without 

making use of any explicit synchronization. The following paragraphs present a summary 

of the salient results found in each chapter. 

Chapter I highlights the increasing demand for real-time systems in life-critical 

areas that were heretofore unexplored Some basic definitions for hard real-time systems 

are also introduced, and a taxonomy for scheduling is proposed. Past research in real-time 

scheduling is reviewed and the major results are listed in tabular form. A brief note shows 
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that the complexity of scheduling algorithms for a non-periodic task set, which are solved 

in polynomial time, become exponential when dealing with periodic task sets. Some 

complexity results for message routing in hard real-time distributed systems are also 

presented. 

Chapter II presents a brief discussion of the Computer Aided Prototyping System 

(CAPS) which is a software engineering tool for developing prototypes of real-time 

systems. The Prototyping System Description Language (PSDL) and its facilities for 

modeling real-time systems are also described in this chapter. 

Chapter HI formalizes the real-time scheduling problem for periodic and sporadic 

task sets. It starts by introducing the scheduling model that will be used throughout the 

dissertation, and proceeds with the presentation of several theorems for improving the 

schedulability analysis of tasks with hard deadlines. The three most important results in 

this chapter are established by Theorems 6, 7, and 8. The Task Demand Theorem 

(Theorem 6), specifies necessary conditions for task sets with arbitrary deadline and 

release times to be schedulable. It is also shown that if release times are taken into 

consideration, due to precedence relations, for example, the conditions are no longer 

necessary, but only sufficient. Theorem 7 extends this result, and proves that any periodic 

or sporadic task set satisfying the conditions of Theorem 6 can be scheduled with the 

Earliest Deadline First (EDF) algorithm, thus making the conditions specified in Theorem 

6 necessary and sufficient The Harmonic Block Theorem (Theorem 8) introduces the 

novel concept of transient and cyclic schedules, which is an enhancement of the traditional 

method for calculating a cyclic schedule, if one exists. It is shown by example that this 

latter method improves the schedulability of task sets which were found to have no 

feasible schedule by the traditional method. Later in the chapter all previous results are re- 

analyzed for the case where precedence relationships exist among the tasks. Theorem 8 is 

also extended to handle the situation where latencies are involved in the scheduling. Note 

that the net effect of introducing latencies in the problem is that the schedule can no longer 

be assumed to have no inserted idling time in the interval [0.LCM].    Finally, a 

144 



methodology to convert sporadic operators into equivalent periodic ones is presented, 

along with some important considerations about this conversion. 

Chapter IV presents an in-depth discussion covering all possible aspects of the 

communication involving two PSDL operators connected by some kind of data stream. 

The synchronization problem between producers and consumers is carefully analyzed, as is 

the underlying meaning of missing a deadline within the context of a real-time system. 

The conclusion reached is that missing deadlines are always attached to data that is not 

generated or consumed in the proper timing. This data approach for the synchronization 

problem will lead to the new distributed scheduling model with no explicit 

synchronization, which is formalized by the Fundamental Synchronization Theorem 

(Theorem 9). The application of this theorem allows each set of tasks allocated to a 

particular processor to be treated as a totally independent set, provided that some more 

stringent timing constraints are satisfied. This approach will greatly decrease the 

scheduling complexity of large distributed real-time systems, although it may be applicable 

as well to cases involving uni-processors or shared memory multiprocessors. At the end 

of this chapter are some considerations about the allocation model implemented for the 

distributed scheduler in CAPS. 

Chapter V presents the current implementation of the CAPS uni-processor 

scheduler and it also proposes an architecture for implementing the full version of the 

distributed scheduler. It describes two options for implementing the distributed version. 

The first is to use the currently available C libraries for implementing the communication 

sub-system. Several problems with this approach are also addressed. The second option 

relies on the availability of a full Ada95 compiler, which, according to the Ada95 

Reference Manual's Annex E, will support communications between tasks running in 

different processors. In the last section of this chapter several interesting considerations 

are presented regarding the timing problems involved in a typical software prototyping 

environment. Topics such as simulated time, normalized reference for time information, 

timing errors, and why they happen are covered in this section. 
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Chapter VI presents experimental results of the partially implemented distributed 

scheduler in CAPS. The random PSDL graph generator, which was one of the important 

factors for a better understanding of the scheduling problems in CAPS, is described. 

Finally, an important issue is discussed which is not given enough attention by most of 

researchers, namely, the least common multiple (LCM) of the periods of a periodic task 

set, which ultimately will determine the size of the cyclic schedule for the task set It is 

demonstrated that, by making minor changes in the original periods, the final LCM and, 

consequently, the solution space of the corresponding scheduling problem can be 

drastically reduced. 

Chapter VII is the conclusion, but it also proposes some modifications for CAPS, 

so that it can become a more dependable and reliable design tool for building real-time 

systems. 

B.       POSSIBLE CAPS MODIFICATIONS 

As a result of this dissertation, several weaknesses and areas requiring 

improvement within the entire CAPS and PSDL were identified. Many errors in the static 

scheduler were corrected, but others require further effort. 

1. Enhancing the CAPS Syntax Directed Editor (SDE) 

As discussed in Chapter IV, several semantic checks for the input PSDL program 

are currently enforced by the scheduler. It seems reasonable, however, to allow most of 

these checks to be enforced by the SDE. This approach would allow the user to detect 

and receive warnings about the design in the early stages of prototyping. In doing so, the 

designer would not have to go all way back to the SDE when a semantic error was found 

by the scheduler. 

2. Tasks with Soft Deadlines 

In CAPS there are only tasks with hard deadlines (TC), or tasks with no deadlines 

at all (NTC). In real-time systems however, there are often a third kind of deadline, but if 

it is missed for some reason it does not cause any harm to the system This is known as a 
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"soft deadline". Right now for example, an NTC operator can starve for a long time 

before its execution. This was certainly not the intention of the designer when the 

operator was placed in the prototype. This anomaly happens because the Non-Time 

Critical operator (NTC) depends on the time left by the static scheduler, which can be 

none if the load factor is 1.0, and all the TC operators use their entire MET. 

The implementation of tasks with soft deadlines or some other approach, like the 

time-value functions presented in Chapter I, would greatly improve the scheduling 

capability of prototypes in CAPS. 

3. Preemptive Static Scheduling 

So far this option has not been used in CAPS because of the ADA83 tasking 

model, which prevents tasks with higher priority to change their relative position in the 

FIFO queue of a rendezvous. ADA95 however, allows dynamic changes in the queue 

according to their priority and, therefore, the preemptive model again becomes a valid and 

reasonable option for the CAPS scheduler. Note that, in general, the preemptive 

scheduling problem is easier to deal with than the non-preemptive one, allowing much 

better scheduling results. Further research is needed, but it appears that allowing a 

mixture of preemptive and non-preemptive tasks is the best approach available. 

4. Triggering Conditions versus Stream Types 

Currently, in the PSDL model a sampled stream does not guarantee that the data is 

not lost or replicated. In the same model, however, the stream type is determined from 

the triggering condition of the consumer operator, e.g., an operator with a TRIGGERED 

BY SOME condition is supposed to guarantee that its output is based on the most recent 

value of the input sampled stream, which is to some extent a contradiction. Our 

suggestion is to separate triggering conditions from the type of the streams, so that there 

can be a more orthogonal grammar for PSDL. A sampled stream should be defined as the 

stream where the data can be read zero or more times, whether in a data flow stream it can 

be read once and only once. It is understood that this definition better conveys the real 
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meaning of a stream, since a stream by itself should not guarantee whether or not the data 

is lost; the stream is simply a mechanism to transfer data. 

Once the idea of separating triggering conditions from stream types is accepted, it 

is necessary to check which are the valid combinations. These combinations are presented 

in Table 7.1, and should be considered valid unless an exception is noted. 

TRIGGERED 
BY ALL 

«TRIGGERED!!* NO TRIGGER 

DATA PLOW STREAM OK NOK (2) NOK (3) 
SAMPLED STREAM NOK (1) OK OK 

Table 7.1. Triggering Condition and Stream Type Combinations 

(1) Assume an operator A TRIGGERED BY ALL X,Y, where X and Y are 

sampled streams. Suppose data arrived only in X. It is necessary to wait for new data in 

Y, but after A is fired, both pieces of data are consumed, and the old data cannot be used 

again, otherwise it is impossible to know which data is new or old, and therefore the 

existence of this case does not make sense. The only situation where this combination 

would be needed is if combinations of TRIGGERED BY SOME and TRIGGERED BY 

ALL are allowed to exist for the same operator. Note, however, that this combination can 

always be implemented in two steps and with one additional operator. 

(2) Assume an operator A TRIGGERED BY SOME X,Y, where X and Y are 

data flow streams. Suppose only X gets new data. Operator A will fire and consume the 

data in X, leaving nothing behind because it is data flow. When new data comes in Y, 

there is nothing in X, and an underflow will occur. 

(3) It does not make sense, because if there is no trigger, how can the consumer be 

guaranteed to always catch new data that comes into the data flow? 

5.        Estimating the Execution Time 

As explained earlier, the MET is an upper-bound on the execution time of an 

operator, and it is this value which is used by the scheduler to generate the static schedule. 

Therefore, everything that can be done to decrease the MET is going to have a direct 

effect on the schedulability of the prototype. It would be nice if it were possible to, at run- 
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time, keep track of the real amount of time needed by each operator, so that feedback 

could be given to the user about its real MET for further update of the Software Base. 

6.        The Uninitialized Sampled Stream Problem 

Suppose there is a non-time critical operator (NTC) connected to a time critical 

operator (TC) by a sampled stream. Clearly, the TC operator may be fired at least once 

before the NTC operator, and therefore it will read garbage from the sampled stream. 

This problem is aggravated in distributed scheduling, as shown by the example in 

Figure 7.1. 

Figure 7.1. The Uninitialized Sampled Stream Problem 

Note that this example does not cause any problem in the uni-processor case, but 

in distributed scheduling, if OPi and OP2 are assigned to different processors, OP2 may 

fire before OPi, and an uninitialized sampled stream will be read. A proposed solution 

would be to force the sampled stream to be declared as a state stream whenever an initial 

value is needed. 

7.       State Stream versus Data Flow 

It does not make sense to have an operator TRIGGERED BY ALL X, if X is, for 

example, a state stream. The reason for this is that values carried by state streams should 

always be available, and in a data flow stream the value is consumed after it is read, and no 

longer available. A warning should therefore be given if this happens in a PSDL program. 
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C.       CONCLUSIONS 

This dissertation shows that hard real-time systems and, more specifically, hard 

real-time scheduling, are areas which are far from being totally explored. The next 

generation of hard real-time systems will be extremely large, complex, and most certainly 

distributed. They will be truly distributed, without any need for synchronization among 

processors. 

Most of the work so far in this area has been concentrated on finding better 

scheduling algorithms, without concentrating on the real need for synchronization. 

Deadlines are always attached to data not being generated or consumed in a timely 

fashion. This dissertation is the first work ever done in the area of distributed scheduling 

without any explicit synchronization, and it is hoped that it will mark a turning point in the 

distributed scheduling field. It is far from being complete, but it does provide a totally 

different perspective on the distributed scheduling problem. 

Finally, this dissertation offers the following scientific contributions: 

1) A new model for distributed scheduling without synchronization; 

2) Several theorems on the schedulability of periodic and sporadic task sets, 

improving the state of the art in the scheduling field; 

3) A general Timing Model for Pototyping Systems, which will enable interaction 

with different time references, keeping total consistency throughout the design; 

4) A method for optimizing the schedule length of periodic task sets. This 

approach will decrease the time spent in scheduling and improve the chances of 

finding a feasible schedule; 

5) Making use of recent theoretical results in scheduling, they have been adapted 

to the model in this work in order to support a systematic and formal method 

for the design, synthesis, and validation of tuning constraints in hard real-time 

systems. 
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More specifically related to CAPS, the following contributions can be listed as 

additional results of this dissertation: 

1) Enhancement of the existing CAPS Prototyping System with a new Distributed 

Scheduler with: 

• allocation capability 

• increased reliability 

• better schedulability 

• and an expert mode 

2) A Random PSDL Graph Generator. 
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